Morgan stellte bei seinen Versuchen fest, dass bestimmte Merkmale gemeinsam an weitere Generationen weitergegeben werden. So fand er heraus, dass neben den Mendelschen Regeln auch die Genkopplung eine wichtige Rolle bei der Vererbung spielt.
Genkopplung Definition
Die Genkopplung beschreibt, ähnlich wie die Mendelschen Regeln, einen Vorgang innerhalb der Vererbung und zeigt auf, wie Merkmale mithilfe von Genen weitergegeben werden können.
Genkopplung ist ein Phänomen in der Genetik, bei welchem durch Gene codierte Merkmale im Laufe mehrerer Generationen gemeinsam vererbt werden. Die dritte Mendelsche Regel (Unabhängigkeitsregel) erweist sich hierbei als ungültig.
Durch die Genkopplung werden Merkmale meist in einer Kombination mit anderen Merkmalen zusammen vererbt. Diese Gruppe an gemeinsam vererbten Genen nennt man auch Kopplungsgruppe.
Bei der dritten Mendelschen Regel werden zwei unterschiedliche Merkmale der reinerbigen Elterngeneration weitergegeben. In der Kindergeneration werden die jeweiligen Merkmale frei und unabhängig voneinander vererbt, im Verhältnis 1:1:1:1. Daher nennt man sie auch Unabhängigkeitsregel oder Neukombinationsregel.
Gründe für eine Genkopplung
Damit es zu einer Genkopplung kommt, spielt sowohl die Anzahl der Gene als auch die Größe und Lage der Gene eine wichtige Rolle.
Anzahl der Gene
Die Genkopplung kann aufgrund der Anzahl der Gene auftreten. Das liegt daran, dass die Anzahl der Gene die Anzahl der homologen Chromosomenpaare deutlich übersteigt. Beim Menschen müssten z. B. etwa 20.000-25.000 Gene auf 23 Chromosomen aufgeteilt werden.
Größe und Lage der Gene
Wie Du weißt, sind Gene im Vergleich zur Gesamtlänge der DNA recht kurz und liegen auf den Chromosomen nah beieinander. Je nachdem, wie nah oder weit entfernt sie als Kopplungsgruppe liegen, kannst Du folgende Regeln unterscheiden:
- Je näher Gene räumlich beieinander liegen, desto höher ist die Wahrscheinlichkeit, dass sie nicht durch Crossing-over getrennt werden. Man nennt sie dann gekoppelte Gene. Durch die gekoppelten Gene sinkt die Rekombinationswahrscheinlichkeit.
- Je weiter entfernt Gene liegen, desto höher ist dagegen die Wahrscheinlichkeit, dass sie durch das Crossing-over aufgetrennt werden. Dadurch kann es zu einem sogenannten Kopplungsbruch kommen.
Du möchtest mehr zu dem Thema Genetik oder den Mendelschen Regeln wissen? Dann schau gleich bei den passenden StudySmarter Artikeln vorbei!
Genkopplung einfach erklärt
Du kannst Dir die Genkopplung also als eine Art der Vererbung merken, bei der es zu einer gemeinsamen Vererbung bestimmter Gene kommt. Merkmale werden also in Kombination mit anderen Merkmalen zusammen vererbt und bilden eine Kopplungsgruppe. Grund dafür ist die Größe der Gene und dass sie auf den Chromosomen sehr nah beieinander liegen.
Genkopplung Crossing-over
Das Crossing-over bezeichnet einen Prozess, der die Genkopplung wieder rückgängig machen kann.
Crossing-over (engl. Überkreuzung) bezeichnet den Austausch von ganzen Chromosomenteilen während der Meiose. Dieser Prozess spielt eine entscheidende Rolle bei der Rekombination (Neuverteilung) der Gene bei der Vererbung.
Beim Crossing-over legen sich zwei homologe Chromatiden während der Prophase I über Kreuz (engl. cross over). Dadurch kommt es an den Überlagerungsstellen zu einem Bruch, wo die neuen Bereiche zurück in die Chromatiden eingefügt werden. Du kannst es Dir auch als Kopplungsbruch merken, da hier Kopplungsgruppen wieder aufgebrochen werden.
Abbildung 1: Der Vorgang des Crossing-over und der Rekombination des Erbguts
Wenn Du noch mehr zum Crossing-over wissen möchtest, dann schau gleich bei dem passenden StudySmarter Artikel vorbei!
Genkopplung Genkartierung
Die Genkartierung ermöglicht es, bestimmte Wahrscheinlichkeiten der Vererbung auf der DNA zu bestimmen.
Die Genkartierung ist die Bestimmung der Lage eines Gens mit bekannten Funktionen auf einem DNA-Molekül.
So werden z. B. Kopplungsanalysen zwischen genetischen Markern und dem zu kartierenden Gen untersucht. Du kannst also die Austauschhäufigkeit untersuchen. Wenn Du die Austauschhäufigkeit herausgefunden hast, kannst Du mit der entstandenen Genkarte die relative Lage der Gene angeben.
Es gibt auch die sogenannte physikalische Kartierung, bei der die genaue Lage eines Gens auf dem Chromosom untersucht wird. Dafür kann man z. B. bei Riesenchromosomen die Bänderungstechnik nutzen. Die Bänderungstechnik beschreibt eine Färbetechnik mit unterschiedlichen Farbstoffen, wodurch die typische Bänderung von Chromosomen sichtbar gemacht werden kann, z. B. unter einem Mikroskop.
Genkopplung – Beispiel der Drosophila melanogaster
Anfang des 20. Jahrhunderts untersuchte Thomas H. Morgan die Vererbung von Merkmalen bei der Fruchtfliege Drosophila melanogaster. Ziel war es, die genetische Abweichung der Fruchtfliege vom Wildtyp zu untersuchen.
Als Wildtyp bezeichnet man bei Pflanzen und bei Tieren das äußere Erscheinungsbild (Phänotyp) und das dazugehörige Genom (Genotyp), das sich durch die natürliche Evolution entwickelt hat. Der Wildtyp gilt daher als typisch für die jeweilige Art und als Standardform.
Um die Abweichung festzustellen, untersuchte er die Drosophila melanogaster in zwei verschiedenen Kreuzungsversuchen.
Erster Kreuzungsversuch: Reinerbige Weibchen und mischerbige Männchen
Für seinen ersten Kreuzungsversuch wählte Morgan Weibchen eines Laborstammes und Männchen des Wildtypstammes. Dabei unterschieden sie sich in bestimmten Merkmalen:
Merkmal | Weibchen | Männchen |
Körperfarbe | schwarz (black, Allel b) | grau (Allel, b*) |
Flügelausprägung | verkümmerte Flügen (vestigal wings, Allel vg) | normale Flüge (vg*) |
Homo- oder Heterozygot | reinerbig bezüglich ihrer Merkmale (b/b und vg/vg) | mischerbig (b*/b und vg*/vg) |
Würde man der dritten Mendelschen-Regel folgen, sollten bei dem Kreuzungsversuch vier unterschiedliche Phänotypen in der Kindergeneration im Verhältnis 1:1:1:1 auftreten:
- grau/normale Flügel
- grau/verkümmerte Flügel
- schwarz/verkümmerte Flügel
- schwarz/normale Flügel
Als Morgan den ersten Kreuzungsversuch durchführte, stellte er hingegen folgende Phänotypen in der Kindergeneration fest:
- graue/normale Flügel
- schwarze/verkümmerte Flügel
Das heißt, dass die Merkmale nur im Verhältnis 1:1 auftraten und die Phänotypen der Elterngeneration widerspiegelten.
Als Ergebnis des ersten Kreuzungsversuchs hielten Morgan und seine Mitarbeitenden fest, dass die Gene für die Körperfarbe und die Flügelform nicht frei kombinierbar sind, wie es die dritte Mendelsche-Regel (Unabhängigkeitsregel) besagen würde. Das bedeutet, dass die 3. Mendelsche Regel hier nicht zutrifft. Vielmehr sind die Merkmale gekoppelt und liegen gemeinsam auf einem Chromosom. Dort bilden die Allele des Chromosoms eine sogenannte Kopplungsgruppe.
Zweiter Kreuzungsversuch: Mischerbige Weibchen und reinerbige Männchen
Als Nächstes untersuchte Morgan die Vererbung eines mischerbigen Weibchens und eines reinerbigen Männchens. Hier stellte er fest, dass es zu vier verschiedenen Phänotypen kommt. Neben den bereits bekannten Phänotypen aus dem ersten Versuch kam es zu zwei weiteren Rekombinationen. Es gab nun auch Fruchtfliegen in der Kindergeneration mit grauem Körper und Stummelflügeln sowie schwarzen Fruchtfliegen mit normalen Flügeln.
Du kannst also folgende vier Kombinationen sehen: b/vg, b*/vg*, b/vg* und b*/vg.
Als Ergebnis des zweiten Kreuzungsversuchs stellte Morgan demnach fest, dass die Gene der Kopplungsgruppe bei dem Weibchen während der Meiose wieder entkoppelt werden können. Eine mögliche Ursache für den Austausch der Gene von zwei homologen Chromosomen stellt das Crossing-over dar. Allerdings führt dieser Austausch zu neuen rekombinierten Phänotypen.
Genkopplung – Das Wichtigste
- Die Genkopplung beschreibt, dass codierte Merkmale auf Genen über mehrere Generationen gemeinsam vererbt werden können
- Kopplungsgruppen sind der Zusammenschluss von Genen
- Während der Meiose kann es zu einem Crossing-over kommen
- Crossing-over bedeutet einen Kopplungsbruch und neue Rekombinationen, da gekoppelte Gene aufgelöst und die Merkmale frei kombinierbar werden
- 1910 untersuchte Thomas H. Morgan die Fruchtfliege Drosophila melanogaster und stellte erstmals die Genkopplung fest.
- Mithilfe der Genkarte kann eine Genkopplung sichtbar gemacht werden.
Nachweise
- DocCheck.com: Genkopplung
- bionity.com: Genkopplung
- meinstein.ch: drosophila genkopplung und kopplungsgruppen
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen