Antikörper einfach erklärt
Antikörper oder auch Immunglobuline sind Proteine, die vom Immunsystem eingesetzt werden. Sie dienen dazu, Krankheitserreger wie Bakterien oder Viren zu bekämpfen. Antikörper erkennen körperfremde Strukturen, die sich als Oberflächenstrukturen auf den Krankheitserregern befinden.
Die spezifischen Oberflächenstrukturen werden auch Antigene genannt. Wenn Du mehr über Antigene erfahren möchtest, dann schaue gerne bei der entsprechenden StudySmarter Erklärung vorbei.
Antikörper – Bildung
Durch eine Reaktion der B-Lymphozyten werden die Antikörper produziert. Einfach erklärt läuft das so ab:
Wenn eine B-Zelle mit einem passenden Antigen in Kontakt kommt, dann werden diese B-Zellen aktiviert und differenzieren sich zu Plasmazellen. Diese schütten eine größere Menge Immunglobuline aus. Die Antigene werden durch Antikörper spezifisch gebunden.
Wenn Du eine Infektion überstanden hast, wird die spezialisierte B-Zelle jedoch nicht einfach beseitigt. Sie transformiert sich zu einer B-Gedächtniszelle. Kommst Du noch einmal mit demselben oder einem fast identischen Erreger in Kontakt, können sofort passende Antikörper produziert werden, ohne dass permanent hohen Mengen davon vorhanden sein müssen.
Nicht immer richten sich Antikörper gegen körperfremde Strukturen. Bei vielen Autoimmunkrankheiten, wie Multipler Sklerose, werden Immunglobuline durch eine Fehlsteuerung des Immunsystems gegen körpereigene Strukturen gebildet.
Wenn Du mehr über Autoimmunerkrankungen erfahren möchtest, dann lies Dir gerne die StudySmarter Erklärung zu diesem Thema durch.
Aufbau Antikörper
In Deinem Körper zirkulieren mehrere Antikörpertypen, deren Grundstruktur jedoch ähnlich ist. Sie setzen sich aus leichten und schweren Proteinketten zusammen. Die beiden Kettenarten bestehen jeweils aus zwei verschiedenen Domänen. Eine davon ist variabel, die andere nicht. Sie stellen eine Art Gerüst dar. Die unterschiedlichen Bestandteile eines Antikörpers sind durch Disulfidbrücken (-S-S-) miteinander verbunden.
Disulfidbrücken sind Verbindungen zweier Schwefelatome. Sie können lediglich zwischen zwei Cystein-Aminosäuren ausgebildet werden. Darüber hinaus dienen sie der Quervernetzung von Proteinen.
Antikörper – Bindung
Immunoglobuline binden Antigene spezifisch. Die Bindung funktioniert nach dem Schlüssel-Schloss-Prinzip. Die Regionen der Antigene, an denen die Bindung stattfindet, bezeichnet man als Epitope.
Die Stelle des Antikörpers, die zum Epitop komplementär ist – die also das Schloss zum Schlüssel darstellt – bezeichnet man als Paratop. Das Paratop wird durch die variablen Regionen der schweren und leichten Kette des Antikörpers gebildet.
Antikörpern – Funktion
Wenn körperfremde Organismen in den Körper eindringen, werden deren Antigene durch das Immunsystem erkannt. Es werden B-Zellen (B-Lymphozyten) aktiviert und sie produzieren spezifische Antikörper. Die Antikörper sind genau gegen das Antigen des Eindringlings gerichtet – sie binden dort nach dem Schlüssel-Schloss-Prinzip.
Die Oberfläche eines Bakterium oder eines Virus wird als körperfremd markiert, wenn sie durch ein Immunglobulin erkannt werden. Zudem wird auch die Ausbreitung des Eindringlings durch die Antikörperbindung eingedämmt. Außerdem blockieren die Immunglobuline wichtige Oberflächenproteine des Erregers. Näheres hierzu erfährst Du in den nachfolgenden Abschnitten.
Antikörper – Bedeutung bei der Immunantwort
Antikörper erfüllen im Rahmen einer Immunantwort mehrere Funktionen. Einerseits sorgen sie dafür, dass eingedrungene Krankheitserreger abgeblockt und bekämpft werden. Dadurch können sie ihre schädliche Wirkung nicht entfalten. Auch eine Interaktion mit körpereigenen Zellen wird verhindert.
Antikörper als Marker
Es ist Antikörpern möglich, Krankheitserreger zu markieren. Dieser Vorgang wird Opsonierung genannt. Dabei wird ihre Oberfläche durch Antikörper und Opsonin bedeckt. Das erleichtert es den phagozytierenden Zellen, die Fremdzellen ausfindig zu machen und in sich aufzunehmen.
Phagozytierende Zellen oder auch Fresszellen sind beispielsweise Makrophagen oder Granulozyten, die unter anderem Bakterien in sich aufnehmen können.
Die Aufnahme vom Makromolekülen wird auch Phagozytose genannt.
Bindung mit Killerzellen
Es besteht die Möglichkeit, dass Antikörper an natürliche Killerzellen binden. Dann können die Immunglobuline die Killerzelle steuern und bei der Zerstörung anderer Zellen oder Erreger lenken. Hat nun ein Erreger eine Zelle befallen, dann ist es dem Antikörper möglich, die Killerzelle so zu lenken, dass sie lediglich den Erreger oder befallenen Teil der Zelle bekämpft und zerstört, nicht aber die komplette Zelle.
Agglutination
Meist binden mehrere Antikörper gleichzeitig an mehrere Erreger, wie Du in Abbildung 3 erkennen kannst. Diesen Prozess nennt man auch Agglutination.Die entstehenden Antigen-Antikörper-Komplexe sind unlöslich und lagern sich in den Geweben oder Blutgefäßen ab (Präzipitation). Die Klumpen können dann von speziellen Zellen des Immunsystems, wie den Makrophagen (Fresszellen), aufgenommen und verdaut werden.
Antikörper – Klassen
Es gibt mehrere Antikörperarten (Klassen). Die Einteilung beruht auf leichten, strukturellen Unterschieden sowie speziellen Funktionen oder Einsatzorten der Antikörper. Hier siehst Du eine Übersicht:
Klasse | Form | Einsatzort | Funktion |
IgA | zwei verbundene Antikörper (dimer) | Schleimhäute | Erregererkennung und -abwehr in den Atemwegen und dem Verdauungtrakt |
IgD | monomer | Alle Körperflüssigkeiten | Aktivierung von Lymphozyten |
IgE | monomer | An Mastzellen gebunden | Erstabwehr an der Körperoberfläche, oft gegen Parasiten gerichtet |
IgG | monomer | Vorwiegend Lymphe | Hauptklasse zur Antigenbindung |
IgM | fünf verbundene Antikörper (pentamer) | Blut | unspezifische Erstabwehr im Blut |
Mononklonale Antikörper
Als Monoklonale Antikörper werden aktive Proteine bezeichnet, die von einer einzigen Zelllinie produziert werden. Diese Zelllinie geht auf einen B-Lymphozyten zurück und ist auf ein spezifisches Epitop ausgelegt.
In der Regel richten sich Antikörper aber gegen mehrere Epitope eines Erregers. In diesem Zusammenhang spricht man auch von polyklonalen Antikörpern.
Monoklonale Antikörper sind in der Diagnostik und Forschung von hoher Bedeutung, da sie eine hohe Spezifität vorweisen, mit der sie eine große Anzahl von Makromolekülen binden können. Sie können praktisch gezielt einen Erreger bekämpfen.
Aus Berichten des RKIs ging beispielsweise hervor, dass die Vergabe von monoklonalen Substraten die Schwere eines Covid-19 Verlaufs senken kann.
Antikörper – Test
Antikörper-Tests werden dazu eingesetzt, um herauszufinden, ob das Immunsystem schon einmal gegen einen bestimmten Erreger gekämpft hat.
Wenn Du beispielsweise herausfinden möchtest, ob Du schon einmal mit Corona infiziert warst, dann kannst Du einen Antikörper-Test machen.
Für den Antikörper-Test wird Blut auf eine Testoberfläche mit Fragmenten des Erregers gegeben. Wenn das Blut Antikörper besitzt, dann reagieren diese mit etwa Virus- oder Bakterien-Fragmenten auf dem Test. Es entsteht eine Bindung. Das kann dann durch eine Farbreaktion nachgewiesen werden.
Antikörper – Therapie
Heutzutage werden in der Forschung und Diagnostik Antikörper eingesetzt, um Krankheiten wie Krebs zu bekämpfen. Sie sollen eine Art Bremse im Immunsystem lösen, sodass die körpereigene Abwehr zum Einsatz kommen und den Tumor zerstören kann. Andererseits sollen Antikörper als "Lockzelle" eingesetzt werden, die die Killerzellen zum Tumor hinführen. Ebenso können sie Wachstumssignale der Tumorzellen blockieren. Aber wie läuft eine Antikörpertherapie ab?
Ablauf einer Antikörpertherapie
Wie Du bereits weißt, binden spezifische Antikörper an Epitope eines Antigens. So machen sie Antigene unschädlich. Bei einer Krebserkrankung beispielsweise sind körpereigene Zellen krankhaft, die eigentlich nicht durch das Immunsystem bekämpft werden, weil sie nicht als körperfremd anerkannt werden. Allerdings befinden sich auf den Zellen Tumor-Antigene und entsprechend Epitope, an die Immunglobuline binden können. Und genau das wird in einer Antikörpertherapie gemacht. Es werden gezielt monoklonale Antikörper eingesetzt, um an die Epitope zu binden und die Tumorzelle absterben zu lassen
Antikörpertherapie am Beispiel von Brustkrebs
Am Beispiel einer Brustkrebserkrankung lässt sich eine Art der Antikörpertherapie verständlich erklären. Denn nicht alle Antikörpertherapien laufen gleich ab, sie sind auf die Krankheit abgestimmt.
Bestimmte Antikörper, in diesem Fall die HER2-Antikörper, blockieren die HER2-Rezeptoren der Tumorzelle. Sie stirbt dadurch ab.
Der HER2 Rezeptor ist ein Protein auf der Zelloberfläche. Dieses Protein sendet Wachstumssignale aus und führt dazu, dass sich die Zellen vermehren, wie sie es als Prozess der natürlichen Zellteilung auch sollen. Werden nun aber zu viele Signale ausgesendet, dann kommt es zu einer unkontrollierten Zellteilung und übermäßigem, krankhaftem Wachstum.
Allerdings laufen Antikörpertherapien wie auch Chemo Therapien nicht ohne das Auftreten von Nebenwirkungen ab. Auch hier können Schwindelgefühl oder Übelkeit auftreten. Dazu besteht das Risiko, dass Allergien auftreten können. Ferner sind weitere Nebenwirkungen möglich.
Antikörper – Das Wichtigste
- Antikörper, auch Immunglobuline genannt, werden beim Kontakt mit Antigenen gebildet.
- Antikörper können sich auch gegen den eigenen Körper richten, dieser Zustand wird Autoimmunkrankheit genannt.
- Sie sind aus zwei leichten und zwei schweren Proteinketten aufgebaut.
- Antikörper binden nach dem Schlüssel-Schloss-Prinzip an einen bestimmten Abschnitt des Antigens, das sogenannte Epitop.
- Die im Körper gebildeten Antikörper sind polyklonal, sie sprechen auf mehrere Epitope an, es werden auch monoklonale Antikörper hergestellt (künstlich), sie reagieren spezifisch nur auf ein Epitop.
- Um die Menge bestimmter Antikörper im Organismus festzustellen, werden Antikörper-Tests durchgeführt.
Nachweise
- dzif.de: Antikörper (6.08.2022)
- chemie.de: Antikörper (07.08.2022)
- antikoerper-online.de: Antikörper (07.08.2022)
- gesundheitsforschung-bmbf.de: Antikörper (07.08.2022)
- daskwort.de: Antikörpertherapie (08.08.2022)
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Content Quality Monitored by:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen