Mit chemischen Bindungen sind Verbindungen zwischen Atomen oder Molekülen gemeint. Stoffe werden durch das Aufbrechen und Knüpfen chemischer Bindungen in chemischen Reaktionen ineinander umgewandelt. Grundsätzlich unterscheidet man bei chemischen Bindungen zwischen zwei Hauptgruppen: Primärbindungen und Sekundärbindungen.
Chemische Bindungen: Primärbindungen
Zu den Primärbindungen gehören starke Bindungen, wie die Ionenbindung, die Elektronenpaarbindung oder die Metallbindung. Diese werden intramolekulare Kräfte genannt.
Ionenbindung
Die Ionenbindung besteht zwischen Metallen und Nichtmetallen. Es muss zwischen den zwei Bindungspartnern ein Elektronegativitätsunterschied von größer als 1,9 vorliegen, damit eine Ionenbindung entstehen kann. Nur dann können Elektronen vollständig vom positiven Partner an den elektronegativeren Partner abgegeben werden.
Nach der Elektronabgabe wird das Metallatom zum Kation: Es wird zum positiv geladenen Ion. Aus dem Nichtmetallatom wird nach Elektronaufnahme ein Anion: Es wird zum negativ geladenen Ion. Aufgrund der unterschiedlichen Ladungen entsteht ein Ionengitter. Dieses wird dadurch stabilisiert, dass sie die unterschiedlichen Ladungen anziehen, gleiche Ladungen sich aber auch abstoßen. So kommen die jeweiligen Abstände zwischen den Ionen auch zustande.
Nur mit viel Wärmezufuhr kann die kinetische Energie der Ionen so weit ansteigen, dass sie die Gitterkräfte überwinden und das Gitter des Ions auflösen. An diesem Punkt hat die ionische Verbindung ihre Schmelztemperatur erreicht, die für diese Substanzen relativ hoch ist.
Ionenbindungen bestehen hauptsächlich bei Salzen.
Natriumchlorid (NaCl) kennst sicherlich als Kochsalz. In einem Natriumchlorid-Molekül besteht eine Ionenbindung aus Natrium und Chlor. Damit sich Natrium und Chlor überhaupt zum Natriumchlorid verbinden, benötigt es eine Triebkraft. Diese kennst du auch unter der Bezeichnung Edelgaskonfiguration.
Bei der Edelgaskonfiguration strebt jedes Atom an, dass die äußere Schale vollständig mit Elektronen besetzt ist. Dies ist bei acht Elektronen der Fall, weshalb man das Prinzip auch als Oktettregel bezeichnet. Dieser Zustand wird angestrebt, da das Atom in der Edelgaskonfiguration energetisch am stabilsten ist.
Da das Natriumatom nur ein Valenzelektron besitzt, gibt es dieses an das Chloratom ab, welches sieben Valenzelektronen sein Eigen nennt. Nach Elektronabgabe wird das Natriumatom zum Natrium-Ion, das positiv geladen ist. Nach Elektronaufnahme wird das Chloratom zum Chlorid-Ion, das negativ geladen ist.
Atombindung oder Elektronenpaarbindung
Die Atombindung hat viele Namen. Sie wird auch Elektronenpaarbindung oder kovalente Bindung genannt. Hierbei teilen sich zwei Elemente ein oder mehrere gemeinsame Elektronenpaare. Die Elektronenpaarbindung entsteht zwischen Nichtmetallen, wobei jedes Atom Valenzelektronen teilweise aufnimmt, sodass jedes Atom Elektronen in die Bindung einbringt.
Es wird unterschieden zwischen polaren und unpolaren Atombindungen. Welche der Fall ist, hängt von den beteiligten Elementen und deren Elektronegativität ab.
Zwischen zwei gleichen Elementen wie zum Beispiel Wasserstoff (H2) oder Sauerstoff (O2) besteht immer eine unpolare Bindung, weil sie dieselbe Elektronegativität haben. Die Valenzelektronen befinden sich genau in der Mitte der zwei Elemente. Das Elektronenpaar wird also gleichberechtigt geteilt. Somit hat resultierende Molekül auch keine Polarität.
Zwischen zwei unterschiedlichen Elementen, wie zum Beispiel bei Chlorwasserstoff (HCl), entsteht eine polare Bindung, aufgrund der unterschiedlich hohen Elektronegativität.
Chlorwasserstoff entsteht aus Chlor (Cl) und Wasserstoff (H). Wasserstoff besitzt nur ein Valenzelektron, welches mit dem Valenzelektron des Chlors eine Einfachbindung eingeht. Da das Chloratom eine höhere Elektronegativität besitzt als das Wasserstoffatom, zieht es die Elektronen näher zu seinem Kern. So wird das Chloratom partiell negativ geladen (δ-) und das Wasserstoff partiell positiv geladen (δ+). Es entsteht somit eine polare Bindung.
Abbildung 1: HCl Polarität
Metallische Bindung
Metallische Bindungen unterscheiden sich grundsätzlich von anderen Bindungen, wie zum Beispiel von ionischen oder kovalenten Bindungen, denn sie teilen sich keine Elektronen oder tauschen diese aus.
Durch die hohe Elektronegativität der Metalle geben die beteiligten Metalle ihre Valenzelektronenkomplett ab. Das führt dazu, dass die Metallrümpfe positiv geladen sind und ein Gitter untereinander bilden.
Die abgegebenen Elektronen lassen sich nicht mehr zu einem bestimmten Atom zuzuordnen, sondern bewegen sich frei in diesem Metallgitter. Durch diese freie Beweglichkeit bezeichnet man diese Elektronen auch als Elektronengas.
Die freie Beweglichkeit der Elektronen bei metallischen Bindungen ist übrigens der Grund für die Leitfähigkeit von Metallen.
Abbildung 2: Metallische Bindungen
Chemische Bindungen: Sekundärbindungen
Zu den Sekundärbindungen zählt man die schwachen Bindungen, wie die Van-der-Waals-Kräfte oder die Wasserstoffbrückenbindung. Diese bezeichnet man auch als intermolekulare Kräfte.
Wasserstoffbrückenbindung
Die Wasserstoffbrückenbindung gehört zu den schwachen chemischen Bindungen und ist eine zwischenmolekulare Kraft. Sie besteht zum Beispiel in Wasser (H2O) und kann nur entstehen, wenn ein Wasserstoffatom an ein Atom mit einer viel höheren Elektronegativität gebunden ist, wie unter anderem Sauerstoff.
Ein Wassermolekül besteht aus einem Sauerstoff und zwei Wasserstoffatomen. Dabei zieht das Sauerstoffatom die einzigen Valenzelektronen des Wasserstoffatoms zu sich. Somit entsteht eine kovalente, polare Bindung. Hier ist der Sauerstoff negativ (δ- ) und das Wasserstoff positiv (δ+) geladen.
Durch diese entstandene Bindung kann der Sauerstoff leichte Wechselwirkungen zu Wasserstoffatomen von anderen Wassermolekülen eingehen. Diese Wechselwirkung bezeichnet man als Wasserstoffbrückenbindung, welche relativ schwach ist und Grund für den flüssigen Zustand ist.
Abbildung 3: Wasserstoffbrückenbindung
Van-der-Waals-Kräfte
Van-der-Waals-Kräfte sind die schwächsten chemischen Bindungen. Sie sind zudem auch die schwächsten zwischenmolekularen Kräfte. Sie entstehen, wenn sich zwei unpolare Moleküle nähern.
Wenn diese sich nah genug kommen, können kurzfristige unsymmetrische Ladungsverteilungen der Elektronen innerhalb ihrer Atomhülle entstehen, sodass Dipole gebildet werden. Aufgrund des induzierten Dipols, werden die Moleküle schwach polar.
Induzierte Dipole entstehen aus temporären Dipolen. Temporäre Dipole sind ein Produkt des Zufalls. Sie bilden sich aus, wenn Elektronen um den Atomkern kreisen und sich zu einem bestimmten Zeitpunkt auf einer Seite des Kerns konzentrieren. So entsteht eine vorübergehende ungleichmäßige Ladungsverteilung im Atom.
Wenn sich nun ein anderes Atom oder Molekül in der Nähe befindet, werden dessen Elektronen von dem partiell positiv geladenen Bereich des Ausgangsatoms angezogen. In dem Bindungspartner entsteht ein induzierter Dipol.
Dipol-Dipol-Kräfte
Unter den sogenannten Dipol-Dipol-Kräften bzw. Dipol-Dipol-Wechselwirkungen versteht man Kräfte, die zwischen Molekülen herrschen, welche ein permanentes elektrisches Dipolmoment besitzen. Die Stärke des Dipol-Dipol-Kräfte ist abhängig von Entfernung und relativer Orientierung des Dipols.
Diese Bindung zwischen zwei Dipol-Molekülen ist mit Abstand schwächer als die kovalente Bindung, die Metallbindung und die Ionenbindung.
Chemische Bindungen: VSEPR Modell
Die Abkürzung VSEPR steht für Valence Shell Electron Pair Repulsion, was auf Deutsch so viel bedeutet wie Valenzschalen-Elektronenpaar-Abstoßung und auch EPA-Modell (Elektronenpaarabstoßungsmodell) genannt wird.
Dieses Modell zeigt die räumliche Gestalt eines Moleküls, indem es auf die abstoßenden Kräfte zwischen den Elektronenpaaren der Valenzschale zurückgreift. Diese Strukturen basieren auf der Prämisse, dass freie Elektronenpaare mehr Platz einnehmen als Bindungspaare und dass sich die an einem Molekül beteiligten Atome so anordnen, dass der Abstand zwischen den freien Elektronenpaaren und der Bindung maximal ist. Eine Folge dessen ist die typische tetraedrische Struktur einiger Moleküle, die du sicherlich kennst.In der untenstehenden Grafik siehst du die Struktur eines tetraedrischen Moleküls. Neben dieser Struktur gibt es noch sehr viele andere Erscheinungsformen, wie unter anderem lineare, gewinkelte oder pyramidale Molekülstrukturen.
Abbildung 5: VSEPR-Modell
Chemische Bindungen: Zusammenfassung
Hier ist eine Übersichtstabelle mit allen chemischen Bindungen, die es gibt:
Chemische Bindungsart | Stärke | Zwischen welchen Atomen? |
Ionenbindung | stark benötigt Elektronegativitätsunterschied von mindestens 1,9 | zwischen Nichtmetallen und Metallen |
Atombindung/ Elektronenpaarbindung | stark | zwischen zwei gleichen oder unterschiedlichen Elementen |
Metallbindung | stark | nur zwischen Metallen |
Wasserstoffbrückenbindung | schwache Wechselwirkung | zwischen Wasserstoffatomen und stark elektronegativen Atomen |
Van-der-Waals-Kräfte | schwach aufgrund nur kurzfristig entstandener Dipole | zwischen zwei unpolaren Molekülen |
Dipol-Dipol-Kräfte | ist von der Entfernung und relativen Orientierung des Dipols abhängig | zwischen Molekülen, die ein permanentes elektrisches Dipolmoment besitzen |
Chemische Bindungen - Das Wichtigste
- Man kann chemische Bindungen in starke (Primärbindungen) und schwache (Sekundärbindungen) Bindungen einteilen
- Ionenbindungen sind aufgrund ihres Elektronegativitätsunterschiedes starke Bindungen
- Atombindungen sind starke Bindungen zwischen zwei gleichen oder unterschiedlichen Elementen
- Metallbindungen sind starke Bindungen zwischen Metallatomen
- Wasserstoffbrückenbindungen sind schwach und kommen zwischen Wasserstoffatomen und stark elektronegativen Atomen vor
- Van-der-Waals-Kräfte sind schwache, kurze Bindungen zwischen zwei unpolaren Molekülen
- Dipol-Dipol-Kräfte können zwischen Molekülen mit permanentem elektrischen Dipolmoment bestehen und sind von der Entfernung und relativen Orientierung des Dipols abhängig
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen