Halogene Definition
Halogene sind die Elemente der 7. Hauptgruppe des Periodensystems und gehören allesamt zu den Nichtmetallen. Zu der Gruppe der Halogene gehören Fluor (F), Chlor (Cl), Brom (Br), Iod (I), Astat (As) und das künstlich hergestellte, radioaktive Element Tenness. Halogene reagieren mit Metallen und bilden Salze, was ihnen auch den Namen Halogene (griechisch: "Salzbildner") einbrachte.
Abbildung 1: Periodensystem der Elemente
Halogene Eigenschaften
Halogene sind sehr reaktionsfreudige Elemente, da sie sieben Außenelektronen besitzen. Damit fehlt ihnen nur ein Valenzelektron, um die Valenzschale voll zu besetzen und damit einen stabilen Zustand, also eine Edelgaskonfiguration zu erreichen.
Wie viele Außenelektronen ein Element hat, kannst Du mithilfe der Gruppenaufteilung im Periodensystem herausfinden. Für alle Elemente in den Hauptgruppen entspricht die Gruppenzahl jeweils der Anzahl an Außenelektronen. Da sich die Halogene in der 7. Hauptgruppe befinden, haben sie sieben Außenelektronen.
Nach der Oktettregel aus der Chemie versuchen alle Elemente acht Außenelektronen zu sammeln, damit sie so stabil sein können wie die Edelgase. Diese haben nämlich mit ihren acht Außenelektronen eine voll befüllte Schale. Sobald Atome diesen Zustand erreichen, sind sie energetisch besonders stabil.
Die Halogene sind aus diesem Grund auch sehr instabil, weshalb sie in der Natur nur in Verbindungen vorkommen. Sie treten meist in Form von zweiatomigen Molekülen auf, wie zum Beispiel F2 und Cl2.
Als Eselsbrücke kannst Du Dir dazu den "HONClBrIF – der Brief vom Onkel" merken. Die Buchstaben stellen dabei die Elemente des Periodensystems dar, die in der Natur nur 2-atomig vorkommen.
Entlang der 7. Hauptgruppe ändern sich die Eigenschaften der Halogene von Fluor zu Iod. Die Wasserlöslichkeit und die Reaktionsfähigkeit nehmen mit steigender Ordnungszahl ab. Die Dichte, der Schmelz- und der Siedepunkt nehmen dagegen zu. Im Normalzustand sind Fluor und Chlor somit gasförmig, Brom ist flüssig und Iod ist ein Feststoff. Auch die Farbigkeit der Halogene nimmt von Fluor zu Iod hin zu.
Halogene Steckbrief
Jedes Halogen weist andere Eigenschaften auf. Der Aggregatzustand, die Farbe und so weiter unterscheiden sich voneinander.
Fluor
Fluor ist ein schwach gelbgrünes Gas, das sehr giftig ist. Es ist das elektronegativste Halogen und damit auch das reaktionsfreudigste. Es wird zur Herstellung von fluorhaltigen Verbindungen eingesetzt, wie zum Beispiel in der Antihaftbeschichtung von Pfannen, wie Teflon. Fluor lässt sich auch in Flussspat (CaF2) und Kryolith oder als Flurapatit in Knochen und im Zahnschmelz finden.
Chlor
Chlor ist ein grünliches Gas, das ebenfalls sehr giftig ist. Das Halogen wird zur Synthese organischer Produkte eingesetzt. Wichtige anorganische Verbindungen mit Chlor sind etwa Salzsäure und Chloride. Es wird außerdem als Bleich- und Desinfektionsmittel eingesetzt. In der Natur findest Du Chlor in Kochsalz (NaCl) und vielen anderen Salzen, vor allem aber im Meerwasser.
Brom
Brom ist eine braune Flüssigkeit, die ätzend wirkt. Die hauptsächliche Nutzung von Brom bezieht sich auf Bleich- und Desinfektionsmittel, aber es wird auch als Unkraut- und Insektenvernichtungsmittel verwendet. Auch Brom lässt sich häufig gemeinsam mit Chloriden im Meerwasser und in Salzen finden.
Iod
Iod ist ein grauschwarzer Feststoff und wird zur Herstellung von Arzneimitteln eingesetzt. Zudem ist Iod auch in Halogenlampen zu finden. Das Halogen Iod findest Du in natürlicher Form als Iodid (I-) vor allem bei den Meereslebewesen, insbesondere bei Algen oder in der Schilddrüse des menschlichen Körpers.
Astat
Astat ist ein radioaktiver und sehr instabiler Feststoff. Da Astat rasch zerfällt, gibt es kaum Untersuchungen dazu. Astat entsteht durch den Zerfall radioaktiver Elemente und ist nur in Spuren nachweisbar.
In der folgenden Tabelle sind die Eigenschaften der einzelnen Halogene noch mal zusammengefasst.
Halogen | Fluor | Chlor | Brom | Iod | Astat |
Abkürzung | F | Cl | Br | I | As |
Farbe | schwach gelbgrün | grünlich | braun | grauschwarz | radioaktiv, daher keine Farbe |
Aggregatzustand | gasförmig | gasförmig | flüssig | fest | fest + sehr instabil |
Siedepunkt [°C] | -188 | -35 | 58 | 183 | 336,8 |
Schmelzpunkt [°C] | -220 | -101 | -7 | 114 | 301,8 |
Elektronegativität | 4,1 | 2,8 | 2,7 | 2,2 | 2,2 |
Tabelle 1: Zusammenfassung der Eigenschaften der Halogene
Halogene Kohlenwasserstoffe
Halogene kommen oftmals in Verbindungen mit Kohlenstoff und Wasserstoff vor. Diese Verbindungen werden halogenierte Kohlenwasserstoffe oder Halogenkohlenwasserstoffe genannt. Dabei handelt es sich um Kohlenwasserstoffe, die zusätzlich noch Chlor, Brom, Fluor oder Iod enthalten. Ein Beispiel dafür ist Chloralhydrat (Abbildung 2). Es handelt sich dabei um das erste synthetisch hergestellte Schlafmittel.
Abbildung 2: Struktur von Chloralhydrat
Halogene Gewinnung
Besonders häufig werden die Halogene durch eine Elektrolyse aus Natriumsalzen gewonnen.
Die Elektrolyse ist ein chemisches Verfahren, bei dem mithilfe elektrischen Stroms eine Redoxreaktion erzwungen wird. Hierbei wird elektrische Energie zu chemischer Energie. Es handelt sich um die Umkehrung einer galvanischen Zelle.
Eine Elektrolysezelle besteht aus zwei Elektroden, die mit einer Stromquelle verbunden sind. An diesen Elektroden laufen jeweils die beiden Teilreaktionen der Redoxreaktion ab. Sie bestehen aus elektrischen Leitern wie Metallen oder Graphit.
Die mit dem Pluspol der Stromquelle verbundene Elektrode nennt sich Anode. Auf der gegenüberliegenden Seite liegt die Kathode, die mit dem Minuspol der Stromquelle verbunden ist. Die beiden Elektroden befinden sich in einem Becken, das mit einem Elektrolyten befüllt ist. Der Elektrolyt ist eine leitfähige Lösung, in der sich Ionen befinden, die reduziert oder oxidiert werden können.
Mehr zum Thema Elektrolyse erfährst Du in der entsprechenden Erklärung.
Für die Elektrolyse von Fluor wird Fluorwasserstoff und Kaliumfluorid verwendet: \(2\space HF{\rightarrow}H_2+F_2\).
Zur Gewinnung von Chlor wird häufig die Chloralkali-Elektrolyse eingesetzt. Dabei kommt es zur Oxidation einer Natriumchlorid-Lösung (NaCl) zu Wasserstoff und Chlorgas: \(2\space NaCl+2\space H_2O{\rightarrow}2\space NaOH+H_2+Cl_2\).
Die anderen Halogene lassen sich zusätzlich auch durch chemische Vorgänge herstellen. Eine Möglichkeit ist die Gewinnung von Brom und Iod durch Chlorgas (Cl) aus Bromid- und Iodid-Lösungen:
- \(Cl_2+2\space Br^-{\rightarrow}2\space Cl^-+Br_2\).
- \(Cl_2+2\space I^-{\rightarrow}2\space Cl^-+I_2\).
Halogene Verwendung
Die Halogene können auf unterschiedliche Weise verwendet werden: zum Beispiel in Schwimmbädern (Chlor und Brom), Trinkwasser (Chlor und Fluorid), Speisesalz (Chlor) und Zahnpasta (Fluor). Abgesehen von Astat, enthält der menschliche Körper Spuren von Halogenen, die als essenziell für die Gesundheit angesehen werden.
Im Alltag kommen die Halogene jedoch nur in sehr geringen Mengen vor, weshalb sie für den Menschen unbedenklich sind. Wie der Naturphilosoph und Arzt Paracelsus (1493-1541) einst sagte, macht allein die Dosis ein Gift.
Halogene werden häufig auch in elektrischen und elektronischen Produkten wie Leiterplatten, Komponenten wie Steckern, elektrischen Kabeln, Ionenbatterien und den Kunststoffgehäusen von Fernsehern und Mobiltelefonen verwendet.
Halogene – Das Wichtigste
Halogene Eigenschaften:
Sehr reaktionsfreudige Elemente der 7. Hauptgruppe.
Nichtmetalle.
Sehr instabil, weshalb sie in der Natur nur in Verbindungen vorkommen. Treten meist in Form von zweiatomigen Molekülen auf, wie zum Beispiel F2 und Cl2.
- Halogene Steckbrief: Jedes Halogen (Fluor, Chlor, Brom, Iod und Astat) weist andere Eigenschaften auf. Der Aggregatzustand, die Farbe und so weiter unterscheiden sich voneinander.
- Halogene kommen oftmals in Verbindungen mit Kohlenstoff und Wasserstoff, die als Halogenkohlenwasserstoffe bezeichnet werden, vor.
- Halogene Verwendung: zum Beispiel in Schwimmbädern (Chlor und Brom), Trinkwasser (Chlor und Fluorid), Speisesalz (Chlor) und Zahnpasta (Fluor).
Nachweise
- Mortimer; Müller (2015). Chemie: Das Basiswissen der Chemie. Thieme Verlag.
- Housecroft; Sharpe (2012). Inorganic Chemistry. Pearson Education.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen