Van der Waals Kräfte

Hast du dich schon einmal gefragt, wieso Geckos selbst eine spiegelglatte Oberfläche hochklettern können oder kopfüber daran laufen können ohne herunterzufallen? Wenn man sich ihre Füße anguckt, haben diese zum Beispiel keine Saugnäpfe. Wie also schaffen diese Tiere sich der Erdanziehung zu widersetzen? Diese Fähigkeit haben Geckos der Anatomie ihrer Füße und unter anderem den Van-der-Waals-Kräften zu verdanken. 

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Van der Waals Kräfte Lehrer

  • 6 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 07.07.2022
  • 6 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 07.07.2022
  • 6 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für Ihr Interesse an den Lernpräferenzen!

Danke für dein Interesse an verschiedenen Lernmethoden! Welche Methode bevorzugst du? (z. B. „Audio“, „Video“, „Text“, „Keine Präferenz“) (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Van-der-Waals-Kräfte: Definition

Zwischen Molekülen existieren verschiedene intermolekulare Kräfte. Zu diesen intermolekularen Kräften gehören neben den Wasserstoffbrückenbindungen und Dipol-Dipol-Kräften auch die Van-der-Waals-Kräfte. Diese werden in der Chemie zu den schwachen chemischen Bindungen gezählt, obwohl diese keine echten Bindungen, sondern Wechselwirkungen sind.

Bei den Van-der-Waals-Kräften handelt sich um Anziehungskräfte, die aufgrund von spontaner Polarisationen der Atome auftreten. Wichtig sind diese Kräfte vor allem zwischen ungeladenen Molekülen, die außerdem keinen permanenten Dipol besitzen.

Van-der-Waals-Kräfte kommen eigentlich zwischen fast allen Teilchen vor. Meistens sind jedoch andere Bindungen und Wechselwirkungen, zum Beispiel Ionenbindungen oder Dipol-Dipol-Wechselwirkungen, vorhanden, die deutlich stärker sind als die Van-der-Waals-Kräfte. Diese überdecken somit die Van-der-Waals-Kräfte.

Als Dipole bezeichnet man Moleküle, die aufgrund der Position der Ladung Enden mit entgegengesetzter Ladung besitzen. Der Dipol kann permanent sein wie in Molekülen, bei denen die Elektronen mithilfe der Elektronegativität, also der Anziehung der Elektronen durch die einzelnen Atome auf eine Seite verschoben werden. In jedem Atom treten Dipole aber auch spontan auf, indem die Elektronen sich zu einem bestimmten Zeitpunkt zufällig alle auf einer Seite befinden.

Van-der-Waals-Kräfte sind schwache ungerichtete Anziehungskräften zwischen Molekülen, die nicht geladen sind und keinen permanenten Dipol besitzen.

Van-der-Waals-Kräfte: Erklärung

Ein spontaner Dipol entsteht

Um Atomkerne bewegen sich Elektronen permanent in Orbitalen. Gehen zwei Atome Bindungen ein, entsteht ein Bindungsorbital, innerhalb welches sich die Elektronen bewegen. Kommt es in diesem Bindungsorbital zwischenzeitlich zur Ungleichverteilung der Elektronen um die Atomkerne – sind die Elektronen also eher um einem Atomkern lokalisiert – hat das Molekül spontan ein positiv und ein negativ geladenes Ende. Das Molekül ist also ein Dipol. Es hat zwei Pole.

Van der Waals Kräfte Entstehung eines Dipols StudySmarter

Möchstest du diese und noch viele weitere tolle Infografiken sehen?

Jetzt kostenlos anmelden
Abbildung 1: Entstehung eines spontanen Dipols

Wie du in der Abbildung auch siehst, kann ein Orbital mit einem Aufenthaltsraum der Elektronen bezeichnet werden. Innerhalb dieser Grenzen besteht eine 90%-ige Wahrscheinlichkeit, dass sich die Elektronen hier befinden. Die Verteilung innerhalb dieses Raums ist allerdings nicht festgelegt. Genauso kreisen Elektronen auch nicht auf Kreisbahnen in diesem Bereich. Sie sind frei beweglich, wodurch erst Dipole entstehen können.

Induzieren eines Dipols im Nachbarmolekül

Nun kann dieses Molekül mit dem spontanen Dipol, auch temporärer Dipol genannt, in einem benachbarten Molekül ebenfalls zu einem Dipol führen. Es induziert also einen anderen Dipol. Das kommt dadurch zustande, dass das positive Ende des Moleküls mit dem spontanen Dipolmoment die Elektronen des noch neutralen Moleküls auf eine Seite zieht. Dadurch hat auch das zweite Molekül ebenfalls eine ungleiche Elektronenverteilung im Bindungsorbital.

Van der Waals Kräfte Induktion eines Dipols StudySmarter

Möchstest du diese und noch viele weitere tolle Infografiken sehen?

Jetzt kostenlos anmelden
Abbildung 2: Induktion eines Dipols in einem Molekül mit symmetrischer Ladungsverteilung

Die Van-der-Waals-Kräfte wirken

Die Moleküle, die jetzt ein spontanes und induziertes Dipol besitzen, ziehen sich an. Denn es herrscht eine elektrostatische Anziehung – die Van-der-Waals-Kräfte – zwischen den Gegenpolen beider Moleküle. Eine alternative Situation wäre, wenn zwei Moleküle mit spontanen Dipolen direkt aufeinander treffen und sich entsprechend ihrer Pole zueinander ausrichten und es so zur Anziehung zwischen beiden kommt.

Van der Waals Kräfte Wechselwirkung Beispiel StudySmarter

Möchstest du diese und noch viele weitere tolle Infografiken sehen?

Jetzt kostenlos anmelden
Abbildung 3: Van-der-Waals-Kräfte zwischen Molekülen

Damit ein spontanes Dipol eines Moleküls ein Dipol in einem anderen Molekül induzieren kann und es so zu Van-der-Waals-Kräften kommt, müssen sich die Moleküle sehr nah sein. Die Wechselwirkungsenergie, also die Stärke dieser Kräfte, ist proportional zur negativen sechsten Potenz des Abstandes. Wird der Abstand also um 2 größer, nehmen die Van-der-Waals-Kräfte um das 64-fache ab.

Eine Annäherung ist umso schwieriger, je höher die Temperatur ist. Und je höher die Temperatur steigt, umso mehr überwiegt die thermische Bewegung gegenüber der Van-der-Waals-Kräften, sodass diese überwunden werden können.

Van-der-Waals-Kräfte: Beispiele

Lerne mit Millionen geteilten Karteikarten

Kostenlos registrieren
Van der Waals Kräfte

Van-der-Waals-Kräfte in Alkanen

Der Einfluss der Van-der-Waals-Kräfte lässt sich am Beispiel der Alkane verdeutlichen: Mit zunehmender Kettenlänge nimmt der Siedepunkt zu. So hat Ethan zum Beispiel einen Siedepunkt von -88,6 °C, während n-Heptan einen Siedepunkt von 98,4 °C hat. Dieses Verhalten lässt sich durch die Van-der-Waals-Kräfte erklären. Die Oberfläche langer Moleküle ist größer als die der kurzen Moleküle.

Dadurch wirken mehr Van-der-Waals-Kräfte zwischen den einzelnen Ketten (Van-der-Waals-Kräfte addieren sich auf) und es braucht eine höhere Temperatur, um diese zu überwinden.

Van der Waals Kräfte in Alkanen StudySmarter

Möchstest du diese und noch viele weitere tolle Infografiken sehen?

Jetzt kostenlos anmelden
Abbildung 4: Van-der-Waals-Kräfte zwischen Ethan-Molekülen (links) und Heptan-Molekülen (rechts)

Heptan könnte also ohne Van-der-Waals-Kräfte kaum als Flüssigkeit vorliegen. Auch anderen unpolaren Substanzen könnten nicht im flüssigem oder festem Aggregatszustand auftreten.

Van-der-Waals-Kräfte bei Konstitutionsisomeren der Alkane

Je verzweigter Alkane werden, desto niedriger wird der Siedepunkt. Das liegt daran, dass mit steigender Verzweigung in den Isomeren die Oberfläche des Moleküls verringert wird. Dadurch können zwischen den einzelnen Molekülen weniger Kräfte wirken. So hat n-Heptan neun Konstitutionsisomere, die unterschiedliche Siedepunkte besitzen. Beispielsweise hat 2-Methylhexan eine Siedetemperatur von 90 °C, 3,3-Diemthylpentan eine Siedetemperatur von 86 °C und 2,2-Dimehtylpentan 79 °C.

Van der Waals Kräfte Konstitutionsisomere von Heptan Alkane StudySmarter

Möchstest du diese und noch viele weitere tolle Infografiken sehen?

Jetzt kostenlos anmelden
Abbildung 5: Konstitutionsisomere von Heptan

Van-der-Waals-Kräfte in Festkörpern

Van-der-Waals-Bindungen können auch Festkörper zusammenhalten. Ein Beispiel dafür sind die Edelgaskristalle, die nur bei sehr tiefen Temperaturen vorkommen und allein auf den Van-der-Waals-Kräften beruhen. Die neutralen Edelgasatome können sich bei tiefen Temperaturen nahe genug kommen, sodass die temporären Dipole interagieren können.

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Van der Waals Kräfte

Van-der-Waals-Kräfte und der Gecko

Jetzt kann man auch erklären, wieso Geckos nicht von der Decke fallen. Geckos haben unter ihren Füßen sogenannte Spatulae. Diese sind Hafthärchen, die nur 15 Nanometer dick sind. Milliarden solcher Hafthärchen vergrößern die Oberfläche der Fußunterseite, wodurch eine größere Kontaktfläche entsteht. Jedes dieser Hafthärchen interagiert mittels Van-der-Waals-Kräfte mit Oberflächen. Diese einzelnen kleinen Kräfte addieren sich zu einer Kraft von etwa 40 Newton auf und halten den Gecko an der Decke.

Van der Waals Kräfte - Das Wichtigste

  • Van-der-Waals-Kräfte beeinflussen die Stoffeigenschaften unpolarer Substanzen, wie Siedepunkt und Schmelztemperatur.
  • Bei Van-der-Waals-Kräften handelt es sich um schwache Anziehungskräfte zwischen temporären Dipolen.
  • Die temporären Dipole im Molekül treten durch die Schwankungen der Elektronenverteilung im Bindungsorbital auf.
  • Je größer eine Oberfläche ist, desto mehr Van-der-Waals-Kräfte können wirken.
  • Van-der-Waals-Kräfte sind additiv.
  • Ohne Van-der-Waals-Kräfte wären unpolare Stoffe nur gasförmig.
Häufig gestellte Fragen zum Thema Van der Waals Kräfte

Was versteht man unter Van-der-Waals-Kräften? 

Unter Van-der-Waals-Kräften versteht man die Anziehungskräfte zwischen zwei Molekülen, die spontan Dipole entwickeln. Dabei ist ein Dipol tatsächlich spontan beziehungsweise temporär. Der andere wird induziert. Durch die ungleiche Ladungsverteilung ziehen sich die entgegengesetzt geladenen Bereiche der Moleküle an. 

Zwischen welchen Molekülen wirken Van-der-Waals-Kräfte? 

Diese Form der Kräftewirkung tritt prinzipiell zwischen fast allen Teilchen auf. Allerdings sind meist andere Anziehungs- oder Abstoßungskräfte stärker, sodass die Van-der-Waals-Kräfte überlagert werden. Bedingung ist, dass die betroffenen Moleküle nicht geladen sind und keinen permanenten Dipol besitzen. 

Wie kommen die zwischenmolekularen Kräfte zustande? 

Aufgrund einer spontanen Ladungsverteilung entwickelt sich ein Molekül zu einem temporären Dipol. Dieser beeinflusst weitere Moleküle und zieht Elektronen mit der positiv geladenen Seite an. Es entsteht ein weiterer Dipol, der als induziert bezeichnet wird. Die unterschiedlich geladenen Bereiche ziehen sich an, was dann als Van-der-Waals-Kraft bezeichnet wird.

Was ist ein spontaner Dipol? 

Ein spontaner Dipol tritt auf, wenn aufgrund der Ladungsverteilung im Molekül eine Seite negativer geladen ist, während die andere leicht positiv geladen ist. Dieser Fall trifft immer zufällig ein, da sich die Elektronen wahllos um den Atomkern bewegen und sich zu diesem Zeitpunkt fast alle auf einer Seite befinden. 

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Chemie Lehrer

  • 6 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren