- eine Additionsreaktion
- eine Eliminierungsreaktion
- eine Substitutionsreaktion oder
- eine Redoxreaktion.
Bei organischen Reaktionen werden so gut wie immer Atombindungen gespalten und später wieder neu verknüpft. In diesen Punkten unterscheiden sich organische Reaktionen von anorganischen Reaktionen. Organische Verbindungen enthalten immer Kohlenstoffatome.
Je nachdem, wie sich der Bindungszustand der Kohlenstoffatome in einer organischen Verbindung während einer Reaktion ändert, unterscheidet man zwischen den genannten Arten der organischen Reaktion. Redoxreaktionen haben in diesem Zusammenhang eine Sonderstellung. Meistens handelt es sich um Nachweis- und Synthesereaktionen.
Organische und anorganische Verbindungen
Chemische Verbindungen werden in anorganische und organische Verbindungen eingeteilt. Die genaue Anzahl der verschiedenen Verbindungen in der anorganischen Chemie liegt bei einigen hunderttausend.
Zum Vergleich: von organischen Stoffen gibt es heutzutage mehrere Millionen unterschiedliche Verbindungen. Durch die Industrie und Forschung werden zudem jährlich zehntausende neue Stoffe synthetisiert.
Bei organischen Verbindungen handelt es sich um Moleküle, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind. Man kann die organische Chemie daher als die Chemie der Kohlenwasserstoffe und ihrer Derivate auffassen. Erdöl und Erdgas sind Beispiele für Verbindungen, die hauptsächlich aus organischen Verbindungen bestehen.
Kohlenstoffatome können in unterschiedlicher Anordnung miteinander verknüpft werden. Die Moleküle, die außer Kohlenstoffatomen auch Wasserstoffatome enthalten, haben eine große Anzahl von Kombinationsmöglichkeiten.
Ein Kohlenstoffatom kann vier kovalente Bindungen zu anderen Elementen ausbilden, da es aufgrund seiner Position im Periodensystem vier Valenzelektronen hat. Es könnte somit beispielsweise bis zu vier Wasserstoffatome binden.
Als Verbindungsmöglichkeiten gibt es
- Ketten ohne oder mit Verzweigungen
- Ringe oder
- Netze.
In diesen können zwischen den Kohlenstoffatomen neben Einfachbindungen auch Doppelt- oder Dreifachbindungen vorkommen. Es wird zwischen den folgenden wichtigen Kohlenwasserstoff-Substanzklassen unterschieden:
Abbildung 1: Übersicht über die Gruppen von Kohlenwasserstoffen
- Alkane sind lineare Moleküle, die verzweigt sein können. Es gibt nur Einfachbindungen in den Molekülen, weshalb es sich um gesättigte Kohlenwasserstoffe handelt.
- Alkene sind auch linear verzweigt. Es gibt hier jedoch eine oder mehrere Doppelbindungen in den Molekülen, weshalb es sich um ungesättigte Kohlenwasserstoffe handelt.
- Alkine sind auch linear verzweigt. Diese Verbindungen enthalten eine oder mehrere Dreifachbindungen und sind deshalb ebenfalls ungesättigte Kohlenwasserstoffe.
- Aromaten sind cyclisch und planar. In diesen Verbindungen gibt es konjugierte Doppelbindungen.
Reaktionsmechanismen in der organischen Chemie
Bei organischen Reaktionen kommt es zur Spaltung von einer oder mehreren Atombindungen der Ausgangsstoffe. Dafür müssen neue Atombindungen bei den Reaktionsprodukten gebildet werden. Da hierbei meistens Elektronenübergänge stattfinden, sind die Reaktionen formal Redoxreaktionen.
In der Organik ist es jedoch wichtigzu wissen, wie viele Bindungen die Kohlenstoffatome zu anderen Molekülen haben. Je nachdem, wie sich die Art und die Anzahl dieser Bindungen während einer Reaktion verändert, unterscheidet man zwischen Additions-, Substitutions- und Eliminierungsreaktionen.
Bei Additions-, Substitutions- und Eliminierungsreaktionen handelt es sich immer um einen "Angriff", der entweder durch ein elektrophiles Teilchen, ein nukleophiles Teilchen oder ein Radikal erfolgt.
Substitutionsreaktion
Substitution bedeutet, dass ein Teilchen an ein Molekül bindet und dass dafür ein anderes Molekül entfernt werden muss. Ein Beispiel hierfür ist die Reaktion von Methan mit Brom zu Brommethan und Bromwasserstoff:
Bei dieser Art von Reaktion bleibt die Anzahl der Bindungen an den Kohlenstoffatomen gleich. Meistens entstehen aus zwei Ausgangsstoffen zwei Reaktionsprodukte. Je nach den Reaktionsteilnehmern unterscheidet man zwischen elektrophilen, nucleophilen und radikalischen Reaktionen.
Elektrophile Substitutionsreaktion
Elektrophile Substitutionsreaktionen kommen typischerweise bei aromatischen Verbindungen vor. Dabei wird das Elektrophil (elektronenliebendes Teilchen) an einen Aromaten gebunden. Dafür tritt ein anderes Teilchen aus dem Aromaten aus.
Elektrophile Teilchen besitzen eine positive Teilladung oder eine positive Ladung. Sie treten mit Stellen hoher Elektronendichte, z.B. Mehrfachbindungen oder freien Elektronenpaaren in Wechselwirkung.
Eine Wechselwirkung ist in der Chemie eine nicht-kovalente Bindung zwischen zwei Molekülen. Diese Bindungen können zum Beispiel Van-der-Waals Kräfte oder Wasserstoffbrückenbindungen sein.
Benzol geht in Gegenwart von dem Katalysator Eisen(III)-Bromid (FeBr3) eine Reaktion mit Brom ein. Dabei wird ein Proton durch ein Bromatom ersetzt. Es kommt zu einer Substitution. Da das "angreifende" Brommolekül während der Reaktion positiv polarisiert ist, handelt es sich um eine elektrophile Substitution.
Abbildung 2: Elektrophile Substitution am Aromaten
Nucleophile Substitutionsreaktion
Bei der nucleophilen Substitutionsreaktion wird ein Nucleophil (kernliebendes Teilchen) an ein Molekül gebunden. Dafür tritt auch hier ein anderes Teilchen aus dem Molekül aus.
Nucleophile Teilchen besitzen eine negative Teilladung oder eine negative Ladung. Diese Teilchen treten mit Stellen geringer Elektronendichte, z.B. Stellen mit positiven Teilladungen oder positiven Ladungen in Wechselwirkung und stellen zur Bildung von Bindungen ein Elektronenpaar zur Verfügung.
Wenn eine Mischung aus Bromethan und Kalilauge (KOH) erhitzt wird, entsteht wasserlösliches Ethanol. Das Bromatom im Bromethan wird durch eine Hydroxygruppe ersetzt. Da das Hydroxidion negativ geladen ist, handelt es sich um eine nucleophile Substitutionsreaktion.
Abbildung 3: Nucleophile Substitution von Bromethan
Radikalische Substitutionsreaktion
Es gibt ebenfalls die radikalische Substitution, die vor allem bei Alkanen vorkommt. Ein Beispiel hierfür ist die Reaktion von Chlor mit Methan. Die Reaktion läuft nur unter Einfluss von Licht bzw. UV-Licht oder bei sehr hohen Temperaturen ab. Dies weist auf einen Ablauf der Reaktion unter Bildung von Radikalen hin. Dabei entsteht Chlorwasserstoff.
Radikale sind Moleküle mit mindestens einem ungepaarten Elektron. Sie sind sehr reaktionsfreudig. Das ungepaarte Elektron wird meist mit einem Punkt dargestellt.
Additionsreaktion
Bei der Additionsreaktion werden mindestens zwei Moleküle zu einem Molekül zusammengefügt. Dabei werden eine oder mehrere Mehrfachbindungen aufgespalten. Die elektrophile Addition ist die typische Reaktion der Alkene und der Alkine. Organische Verbindungen, die gesättigt vorliegen, enthalten keine Mehrfachbindungen und können deshalb auch keine Additionsreaktion eingehen.
Ethen reagiert zum Beispiel schnell mit Brom oder Chlor:
Stößt ein Brommolekül auf die Ladungswolke der Doppelbindung eines Ethenmoleküls, werden die Elektronen des Brommoleküls durch die hohe negative Ladungsdichte der Doppelbindung etwas verschoben. Das Molekül wird also polarisiert.
Diese Elektronenverschiebung führt zu einer heterolytischen Bindungsspaltung im Brommolekül. Das heißt, die Bindungselektronen werden nicht gleichmäßig aufgeteilt, sondern verbleiben bei einem der Bindungspartner.
Es wird ein Bromidion gebildet. Gleichzeitig bildet sich ein cyclisches Kation aus. Dieses reagiert dann mit dem Bromidion zum 1,2-Dibromethanmolekül.
Hier spricht man von einer elektrophilen Addition, da es sich zu Beginn der Reaktion um einen elektrophilen Angriff durch das Bromidion handelt.
Eliminierungsreaktion
Die Abspaltung von kleinen, stabilen Molekülen aus einem größeren Molekül nennt man Eliminierung. Hierbei müssen zwei Bindungen aufgebrochen werden. Die Eliminierungsreaktion ist die Umkehrung der Additionsreaktion und konkurriert mit der nukleophilen Substitution.
Hauptsächlich Alkane, Halogenalkane und Alkohole können Eliminierungsreaktionen eingehen.
Die beiden wichtigsten Eliminierungen sind:
- die Dehydratisierung (Abspaltung von Wasser)
- die Dehydrohalogenierung (Abspaltung von Halogenwasserstoff)
Redoxreaktionen
Bei Redoxreaktionen kommt es zur Änderung des Oxidationszustandes der reagierenden Substanzen. Diese Art von Reaktion verläuft in der organischen und anorganischen Chemie identisch.
Die Verbrennung von Kohlenwasserstoffen ist eine Redoxreaktion.
Ein einfaches Beispiel hierfür ist die Verbrennung von Methan, die folgendermaßen verläuft:
Bei dieser Reaktion wird der Sauerstoff zu Wasser reduziert. Es kommt also zu einer Elektronenaufnahme. Das Methan wird zu Kohlendioxid oxidiert und gibt Elektronen ab. Diese Reaktion ist stark exotherm und findet bei der Verbrennung von Kraftstoffen und Heizgasen statt.
Organische Reaktionen - Das Wichtigste
- Alle organischen Reaktionen enthalten Kohlenwasserstoffe.
- Die organische Chemie wird als die Chemie der Kohlenstoff-Verbindungen bezeichnet.
- Bei organischen Reaktionen werden fast immer eine oder mehrere Atombindungen gespalten, wofür neue gebildet werden.
- Reaktionsmechanismen in der organischen Chemie
- Substitutionsreaktion
- Additionsreaktion
- Eliminierungsreaktion
- Redoxreaktion.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen