Radikalische Substitution – Mechanismus
Im Rahmen einer radikalischen Substitution reagieren meist ein Halogen, wie Fluor, Chlor, Brom oder Iod zusammen mit einem Alkan. Dabei entsteht ein Halogenalkan.
Du kannst dir den Mechanismus am folgenden Beispiel zur Reaktion von Brom (Br2) und Heptan (C7H16) ansehen. Am Beginn einer jeden radikalischen Reaktion steht die Bildung eines Radikals:
1. Schritt: Kettenstart
Abbildung 1: Kettenstart der radikalischen Substitution
Dieser erste Schritt der radikalischen Substitution wird als Kettenstart oder Initiation bezeichnet. Um aus dem Brom-Molekül ein Radikal zu generieren, muss die kovalente Bindung des Halogenmoleküls homolytisch gespalten werden.
Unter homolytischer Spaltung versteht man in der Chemie das Aufbrechen einer kovalenten Bildung zweier Atome. Diese Spaltung wird durch äußere Einflüsse wie Licht oder thermische Energie (Wärme) ausgelöst. Da die ehemaligen Bindungspartner je ein Bindungselektron behalten, entstehen zwei Radikale.
Das Radikal erkennst du daran, dass sich nach der Reaktion ein ungepaartes Elektron an jedem Brom-Atom befindet. Dieses wird mit einem Punkt dargestellt. Radikale gelten meistens als besonders reaktionsfreudig.
2. Schritt: Kettenfortschritt
Abbildung 2: Kettenfortschritt der radikalischen Substitution
Als Nächstes folgt der Kettenfortschritt. Dieser Schritt wird auch Folgereaktion, Kettenreaktion oder Prolongation bezeichnet.
Wie du in Abschnitt a der Abbildung siehst, greift das reaktionsfreudige Halogenradikal nun den Kohlenwasserstoff Heptan an. Dabei entsteht Bromwasserstoff (HBr) und ein Alkylradikal.
Das eben erzeugte Alkylradikal greift nun ein weiteres Halogenmolekül an (Abschnitt b) und erzeugt ein Halogenradikal. Es entsteht das Halogenalkan 1-Bromoheptan. Das verbleibende Brom-Radikal kann erneut ein Halogen Molekül angreifen. Eine Kettenreaktion beginnt.
3. Schritt: Kettenabbruch
Abbildung 3: Kettenabbruch der radikalischen Substitution
Der letzte Schritt der radikalischen Substitution wird Kettenabbruch, Abbruchreaktion oder Termination genannt. Hierbei kommt, wie der Name schon erschließen lässt, die Kettenreaktion durch Rekombination zu einem Ende.
Die Rekombination bezeichnet in der Chemie einen Prozess, bei dem zwei Atome mit einem ungepaarten Elektron, also Radikale, eine kovalente Bindung eingehen. Sie ist die Umkehrreaktion der homolytischen Spaltung.
Dabei können folgende Reaktionen zu einem Kettenabbruch führen:
- zwei Halogenradikale treffen aufeinander – hierbei entsteht ein unerwünschtes Halogenmolekül.
- zwei Alkylradikale rekombinieren – hierbei entsteht eine unerwünschte Alkanverbindung.
Diese Kettenabbruch-Reaktionen spielen jedoch nur eine untergeordnete Rolle. Die Rekombination von zwei Radikalen ist einerseits energetisch ungünstig, andererseits ist deren Konzentration so gering, dass ein Aufeinandertreffen eher unwahrscheinlich ist. Die radikalische Substitution kommt also meistens zum Ende, wenn mindestens eines der Edukte verbraucht ist.
Radikalische Substitution – Besonderheiten
Im Folgenden findest du die Besonderheiten der radikalischen Substitution.
Radikalische Substitution – Selektivität & Reaktivität
Die Wahrscheinlichkeit, dass ein Alkyl-Radikal auf ein Halogenmolekül trifft, erhöht sich, je länger das Radikal existiert. Somit kannst du sagen, dass sich die Reaktivität des Radikals mit seiner Stabilität erhöht. Das klingt zunächst widersprüchlicher, als es ist.
Ähnlich wie bei Carbokationen gilt auch für Alkyl-Radikale: je höher diese substituiert sind, desto stabiler.
So sind Kohlenstoffradikale, an denen drei weitere Kohlenstoffatome gebunden sind (tertiäre Radikale) stabiler, als Radikale mit nur zwei gebundenen Kohlenstoffatomen (sekundäre Radikale). Diese sind wiederum stabiler als primäre Radikale.
Abbildung 4: Stabilitätsreihe der Kohlenstoffradikale
Bei der radikalischen Substitution gilt auch, dass sich mit sinkender Reaktivität die Regioselektivität erhöht. Einfacher gesagt: je weniger reaktiv die Reaktionsteilnehmer sind, desto eher läuft eine bevorzugte Reaktion an speziellen Stellen eines Moleküls ab.
Radikalische Substitution – Aromaten
Um herauszufinden, wo die radikalische Substitution an Aromaten abläuft, kannst du die SSS-Regel nutzen.
Die SSS-Regel besagt, dass eine Substitutionsreaktion unter bestimmten Bedingungen an der Seitenkette stattfindet. SSS steht für Strahlung, Siedehitze, Seitenkette. Das heißt, unter Einfluss von Strahlung und Siedehitze finden radikalische Substitutionen an der Seitenkette von Aromaten statt.
Um mehr über die Substitution und die SSS-Regel zu erfahren, kannst du einen Blick in das StudySmarter Original SSS-Regel werfen.
Radikalische Substitution – Energiediagramm
Abbildung 5: Energiediagramm der radikalischen Substitution; Quelle: via flexikon.doccheck.com
Für die Halogene Brom, Chlor, Iod und Fluor läuft die radikalische Substitution jeweils anders ab. Am besten ist dies mit Hilfe eines Energiediagramms für den 2. Schritt zu erklären:
Auf der y-Achse findest du die freie Energie G (auch Gibbs-Energie genannt), auf der x-Achse wiederum die Reaktionskoordinate. Die Reaktionskoordinate beschreibt das Fortschreiten der Reaktion. In diesem Fall gibt sie an, wie weit die H-Cl-Bindung (links), bzw. die H-Br-Bindung (rechts) ausgebildet, beziehungsweise fortgeschritten ist.
Während der Reaktion entsteht ein energiereicher Übergangszustand , in dem die R-H-Bindungen teilweise gelöst und die H-Cl-, bzw. H-Br-Bindung teilweise ausgebildet werden. Um diesen Übergangszustand zu erreichen, muss Energie eingesetzt werden. Diese Energie wird Gibbs-Aktivierungsenergie ΔG# genannt.
Du kannst beispielsweise erkennen, dass die Aktivierungsenergie für die Bildung des Chlorradikals geringer ist, als bei einem Bromradikals.
An den Scheitelpunkten des Energiediagramms finden immer Bindungsbrüche statt. Diese passieren durch Licht- oder Wärmeenergie und erfordern zudem eine hohe Aktivierungsenergie.
Dabei wird ersichtlich, dass die Bildung des Alkyl-Radikals durch das Chlor-Radikal energetisch begünstigt ist – dieser Zustand ist energieärmer, als der Ausgangszustand. Das heißt, dass Energie in Form von Wärm frei wird. Die radikalische Substitution von Chlor an ein Alkan ist also exotherm.
Anders sieht es beim Brom aus. Hier liegt die Energie des Alkyl-Radikals und des Bromwasserstoffs höher als die der Ausgangsverbindungen. Der Reaktion muss also Energie zugeführt werden. Die Reaktion ist also endotherm.
Radikalische Substitution - Das Wichtigste
- Die radikalische Substitution ist eine Substitutionsreaktion – es wird ein Wasserstoffatom durch ein Halogen ersetzt.
- Es handelt sich bei der radikalischen Substitution um eine sehr schnell ablaufende Kettenreaktion.
- Den Mechanismus der radikalischen Substitution kannst du in drei Schritte zusammenfassen: 1. den Kettenstart 2. den Kettenfortschritt 3. den Kettenabbruch.
- Die Reaktivität des Radikals erhöht sich mit seiner Stabilität.
- Je weniger reaktiv die Reaktionsteilnehmer sind, desto eher läuft eine bevorzugte Reaktion an speziellen Stellen eines Moleküls ab (Selektivität).
- Mithilfe eines Energiediagramms kannst du die radikalische Substitution mit verschiedenen Halogenen vergleichen.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen