Elektrolyse

Mobile Features AB

Akkus gehören für den Menschen mittlerweile einfach zum Leben dazu. Damit tragbare Elektronik mit ausreichend Strom versorgt werden kann, müssen die meist fest verbauten Energiespeicher immer wieder mit frischem Strom aufgeladen werden.

Los geht’s

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Elektrolyse Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 09.02.2023
  • 7 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 09.02.2023
  • 7 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Das Auf- und Entladen eines Akkus stellt eine Redoxreaktion dar. Beim Entladen erzeugt der Lithium-Ionen-Akku Deines Handys genug Strom, damit es im Optimalfall gut über den Tag hinweg versorgt ist. Die chemische Reaktion läuft in die Entladerichtung. Sobald der Akku leer ist, lädst Du ihn wieder auf und kehrst diese Reaktion um, sodass sich die chemischen Stoffe regenerieren können. Dieser Vorgang wird Elektrolyse genannt.

    Elektrolyse Definition

    Die Elektrolyse ist ein chemisches Verfahren, bei dem mithilfe elektrischen Stroms eine Redoxreaktion erzwungen wird. Hierbei wird elektrische Energie zu chemischer Energie.

    Über eine Elektrolyse kann also chemische Energie erzeugt werden. Besonders nützlich ist das, wenn Energie für später gespeichert werden soll, wie das bei Akkus der Fall ist. Außerdem kann sie zur Gewinnung und Aufreinigung von chemischen Stoffen wie beispielsweise Aluminium verwendet werden. Aber auch zur Spaltung von Wasser in Wasserstoff und Sauerstoff kann sie genutzt werden. Zu diesem Thema erfährst Du weiter unten mehr.

    Elektrolyse Aufbau

    Die Elektrolyse kann auch als Umkehrung einer galvanischen Zelle bezeichnet werden. Deshalb ist der Aufbau einer Elektrolysezelle dem einer galvanischen Zelle sehr ähnlich.

    Du kannst Dir für den Augenblick merken, dass galvanische Zellen Strom liefern, indem sie chemische Energie verbrauchen und in elektrische Energie umwandeln. Elektrolysezellen müssen hingegen mit Strom versorgt werden, damit sie diesen in chemische Energie speichern können. Wenn Du mehr zur galvanischen Zelle lesen willst, schau Dir die entsprechende Erklärung an.

    Eine Elektrolysezelle besteht aus zwei Elektroden, die mit einer Stromquelle verbunden sind. An diesen Elektroden laufen jeweils die beiden Teilreaktionen der Redoxreaktion ab. Sie bestehen aus elektrischen Leitern wie Metallen oder Graphit.

    Die mit dem Pluspol der Stromquelle verbundene Elektrode kannst Du auch Anode nennen. Auf der gegenüberliegenden Seite wird die Kathode platziert, die mit dem Minuspol der Stromquelle verbunden ist. Die beiden Elektroden befinden sich in einem Becken, das mit einem Elektrolyten befüllt ist. Der Elektrolyt ist eine leitfähige Lösung, in der sich Ionen befinden, die reduziert oder oxidiert werden können.

    Elektrolyse Chemischer Ablauf

    Damit die Elektrolyse ablaufen kann, legst Du mithilfe einer Stromquelle einen Gleichstrom an den beiden Elektroden an. Auf diese Weise fließen die Elektronen von der Anode zur Kathode und sammeln sich dort. An der Kathode entsteht so ein Elektronenüberschuss und an der Anode ein Elektronenmangel.

    Elektrischer Strom entsteht, wenn sich Ladungsträger wie Ionen, Elektronen oder Protonen in eine bestimmte Richtung bewegen. Stell Dir vor, diese Bewegungsrichtung bleibt zeitlich konstant, die Teilchen bewegen sich also konstant in die gleiche Richtung. Diese Stromart nennst Du Gleichstrom.

    Im Unterschied zum Gleichstrom bewegen sich die Teilchen beim sogenannten Wechselstrom abwechselnd in die entgegengesetzte Richtung.

    Durch den Elektronenüberschuss an der Kathode werden positiv geladene Ionen in der Nähe (an der Elektrode oder aus der Lösung) abgefangen und reduziert. Auf der anderen Seite geschieht genau das Gegenteil: Die Elektronen der negativ geladenen Anionen werden von der Anode aufgenommen. Die Anionen werden dabei oxidiert. Anschließend werden die gewonnenen Elektronen durch die Stromquelle hindurch zur Kathode transportiert, wodurch sich der Stromkreis schließt.

    Eine Redoxreaktion besteht aus zwei Teilschritten: der Reduktion und der Oxidation. Bei der Reduktion werden Elektronen aufgenommen und bei der Oxidation abgegeben. Wenn Du mehr dazu lesen willst, schau Dir die Erklärung zur Redoxreaktion an.

    Damit eine Elektrolyse stattfinden kann, muss eine Mindestspannung erreicht werden, die auch als Zersetzungsspannung (\(U_z\)) bezeichnet wird.

    Elektrolyse Wirkungsgrad

    Die Elektrolyse hat in den meisten Fällen einen Wirkungsgrad von über 70 %. Allerdings ist die Voraussetzung dafür, dass die angelegte Spannung in etwa der Zersetzungsspannung entspricht. Wenn Du ein Diaphragma benutzt, könnte der Wirkungsgrad dadurch geringer sein.

    Der Wirkungsgrad steht für den Anteil der zugeführten Energie, der bei einer Umwandlung auch tatsächlich gewonnen wird. Demnach verrät Dir dieser Wert, wie effizient Deine Apparatur ist.

    Der Wirkungsgrad der industriellen Elektrolyse von Wasser liegt beispielsweise zwischen 60 und 85 %. Durch verschiedene Zusatzstoffe und Optimierungen kann der Wert verbessert werden. Wie die Elektrolyse von Wasser genau abläuft, erfährst Du weiter unten.

    Elektrolyse Überspannung

    Überspannungen können sowohl an der Anode als auch an der Kathode entstehen und die eigentlich benötigte Spannung erhöhen.

    Die benötigte Zersetzungsspannung kann beispielsweise mithilfe der Nernst-Gleichung berechnet werden. Wenn Du ein paar Beispielrechnungen dazu sehen willst, schau Dir gern die entsprechende Erklärung dazu an.

    Die zusätzlich aufgebrachte Überspannungsenergie kann nicht zum Stoffumsatz beitragen, da sie als Wärme verloren geht. Das ist natürlich nicht wünschenswert, da dadurch der Prozess verlangsamt wird. Vor allem bei Reaktionen, bei denen Gase wie Wasserstoff und Sauerstoff entstehen, kann es teilweise zu hohen Überspannungen kommen.

    Eine Überspannung kann abhängig von der Beschaffenheit der Elektroden sein. Aber auch die Stromstärke und die Temperatur können einen Einfluss auf die Überspannung haben. So kommt es zum Beispiel dazu, dass eine höhere Stromstärke eine Überspannung begünstigt, wohingegen eine Temperaturerhöhung diese in der Regel verringert.

    Mehr zum Thema Überspannung findest Du in der entsprechenden Erklärung. Dort findest Du auch eine Tabelle mit experimentell bestimmten Überspannungswerten.

    Elektrolyse von Wasser

    Über die Elektrolyse von Wasser können Wasserstoff und Sauerstoff getrennt werden. Besonders zur Wasserstoffgewinnung wird dieses Verfahren gerne eingesetzt. Aber auch aus der Pflanzenwelt lässt sich ein Beispiel nennen: Bei der Photosynthese stellen Pflanzen über eine Elektrolyse frischen Sauerstoff her.

    Elektrolyse Reaktionsgleichung

    Bei diesem Beispiel bildet Wasser (H2O) den Elektrolyten. Sobald der Gleichstrom angelegt wurde, wird Wasser zu Wasserstoff (H2) und Sauerstoff (O2) gespalten:

    2 H2O Elektrolyse 2 H2 + O2

    Während dieser Reaktion wird ein Wassermolekül oxidiert und das andere reduziert. Das funktioniert so gut, weil Wasser dank der Autoprotolyse von allein zu Hydroxidionen (OH-) und Oxoniumionen (H3O+) zerfällt. Die entsprechende Gleichgewichtsreaktion sieht so aus:

    2 H2O H3O+ + OH-

    Die dabei entstehenden Ionen bilden dann die Elektrolytlösung und können sich frei bewegen. Entsprechend der Ladung wandern die Oxoniumionen nun zur Kathode, an der sie jeweils ein Elektron aufnehmen, was einer Reduktion entspricht. Dadurch entsteht wieder Wasser (H2O) und zusammen mit einem weiteren reduzierten Wasserstoffatom molekularer Wasserstoff (H2).

    An der Anode sammeln sich die Hydroxidionen (OH-) und geben Elektronen ab – es findet also eine Oxidation statt. Aus mehreren Hydroxidionen wird so molekularer Sauerstoff (O2) und wieder Wasser. Die einzelnen Reaktionen kannst Du so aufschreiben:

    TeilreaktionReaktionsgleichung
    Wassergleichgewicht8 H2O 4 H3O+ + 4 OH-
    KathodenreaktionElektrolyse Chemisches Kathodenreaktion StudySmarter
    AnodenreaktionElektrolyse Chemisches Anodenreaktion StudySmarter
    GesamtgleichungElektrolyse Chemisches Gesamtgleichung der Elektrolyse von Wasser StudySmarter
    gekürztElektrolyse gekürzte Gleichung der Elektrolyse von Wasser StudySmarter

    Wenn Du mehr zur Elektrolyse von Wasser erfahren willst, schau Dir unbedingt die entsprechende Erklärung zu diesem Thema an.

    Elektrolyse – Das Wichtigste

    • Bei der Elektrolyse wird durch elektrischen Strom eine Redoxreaktion hervorgerufen. Das heißt, sie wird genutzt, um mithilfe von Strom Elektronen zu verschieben.
    • Die Elektrolyse kann als Umkehrung der galvanischen Zelle betrachtet werden.
    • Elektrolyse findet zum Beispiel in Batterien, Akkus oder auch Brennstoffzellen statt. Sie kann jedoch ebenfalls für die Metallgewinnung oder Reinigung eingesetzt werden.
    • An der Anode werden die Anionen oxidiert und an der Kathode die Kationen reduziert.
    • Damit eine Elektrolyse stattfinden kann, muss die Zersetzungsspannung \(U_z\) überwunden werden.

    Nachweise

    1. S. Milanzi et al. (2019). Technischer Stand und Flexibilität des Power-to-Gas-Verfahrens. Technische Universität Berlin.
    2. M. Binnewies et al. (2011). Allgemeine und Anorganische Chemie. Spektrum Akademischer Verlag.
    3. A. Hickling; S. Hill. (1947). Oxygen Overvoltage. The influence of Electrode Material, Current Density and Time in aqueous solutions. Discussions of the Faraday Society.
    Lerne schneller mit den 1 Karteikarten zu Elektrolyse

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Elektrolyse
    Häufig gestellte Fragen zum Thema Elektrolyse

    Was ist eine Elektrolyse einfach erklärt?

    Einfach erklärt ist eine Elektrolyse eine Redoxreaktion, die mithilfe von Strom umgekehrt wird.

    Wie funktioniert die Elektrolyse?

    Bei einer Elektrolyse wird ein Gleichstrom angelegt, sodass eine Redoxreaktion erzwungen wird. An der Kathode findet dabei die Reduktion und an der Anode die Oxidation statt.

    Welche Vorgänge laufen bei der Elektrolyse ab?

    An der Kathode findet die Reduktion und an der Anode die Oxidation statt.

    Wie viel Volt für die Elektrolyse?

    Damit die Elektrolyse stattfinden kann, musst Du mindestens die Zersetzungsspannung einstellen.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Chemie Lehrer

    • 7 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren