Tiefensuche

Mobile Features AB

Du stehst vor der Herausforderung, den Begriff Tiefensuche zu verstehen. In diesem Artikel werden Schlüsselkonzepte und Implementierungen dieses wichtigen Informatik-Algorithmus behandelt. Anhand präziser Erläuterungen und praktischer Anwendungsfälle erhältst du einen detaillierten Einblick in das Themenfeld der Tiefensuche. In spätere Abschnitte steigt der Artikel tiefer ein, und bietet Vergleiche zwischen Tiefen- und Breitensuche, sowie Einblicke in die iterative Tiefensuche und ihre Anwendung. Stärke dein Verständnis in der Informatik, verleihe deinen Programmierkünsten mehr Tiefe und verbessere so dein technisches Verständnis und deine Problemlösefähigkeiten.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Tiefensuche Lehrer

  • 15 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 11.10.2023
  • 15 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 11.10.2023
  • 15 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Einführung in die Tiefensuche

    In der Informatik spielt das Durchsuchen von Datenstrukturen, wie z.B. Graphen oder Bäumen, eine fundamentale Rolle. Eines der grundlegenden Algorithmen zur Durchsuchung dieser Strukturen ist die Tiefensuche. Mit der Tiefensuche, auch Depth-First Search (DFS) genannt, kannst du jeglichen Pfad eines Graphen oder Baums genau einmal durchlaufen, indem du immer den zugrundeliegenden Verzweigungen folgst und so tief wie möglich in die Datenstruktur einsteigst.

    Definition und Grundkonzept der Tiefensuche

    Die Tiefensuche ist ein Verfahren zur systematischen Durchsuchung von Knoten in Graphen oder Bäumen. Die Idee ist recht einfach: Sobald ein Knoten entdeckt wird, wird dieser als Ausgangspunkt genommen und dessen noch nicht besuchte Nachbarknoten werden durchlaufen. Anschließend wird dieser Vorgang für jeden entdeckten Knoten wiederholt, bis jeder Knoten einmal besucht wurde.

    Beim Durchführen einer Tiefensuche, folgst du der Strategie, zuerst alle Knoten in Tiefenrichtung abzulaufen, bevor die Nachbarknoten auf der gleichen Ebene besucht werden. Dies kannst du dir vorstellen wie das Durchqueren eines Labyrinths, bei dem du zunächst immer dem Wegverlauf folgst, bis du nicht mehr weiter kommst, bevor du zurückkehrst, und den nächsten Weg einschlägst.

    Nehmen wir als Beispiel einen Graphen mit den Knoten A, B, C, D, E und den entsprechenden Kanten zwischen diesen Knoten. Bei einer Tiefensuche beginnst du zum Beispiel beim Knoten A, folgst der Kante zum Knoten B und von dort der Kante zum Knoten C. Nun hast du alle erreichbaren Knoten von A in der Tiefe besucht und kehrst zu B zurück, um dann von B aus Knoten E zu besuchen.

    Implementierung der Tiefensuche in Java

    Die Implementierung der Tiefensuche in Java ist relativ unkompliziert. Im Folgenden ist eine beispielhafte Implementierung vorgestellt.
     
    public void tiefensuche(int knotenID) {
      visited[knotenID] = true;
      for(int i = 0; i < graph[knotenID].length; i++) {
        if(graph[knotenID][i] == 1 && !visited[i]) {
          tiefensuche(i);
        }
      }
    }
    
    Dieser Quellcode repräsentiert eine rekursive Methode zur Durchführung der Tiefensuche. Zuerst wird der aktuelle Knoten als besucht markiert, dann werden alle benachbarten Knoten, die noch nicht besucht wurden, rekursiv durchlaufen.

    Tiefensuche Algorithmus und seine Anwendung

    Der Tiefensuche Algorithmus ist ausgesprochen vielseitig anwendbar. Einige Anwendungsgebiete sind zum Beispiel die Lösung von Labyrinthen, die Bestimmung der Erreichbarkeit von Knoten in einem Graph, die Analyse von Netzwerken und vieles mehr. Hinsichtlich seiner Leistung hat der Tiefensuche Algorithmus eine Zeitkomplexität von \(O(V+E)\), wobei \(V\) die Anzahl der Knoten und \(E\) die Anzahl der Kanten repräsentiert. Bei einer vollständigen Erkundung des Graphen besucht der Algorithmus jeden Knoten und jede Kante genau einmal.

    Für viele praktische Anwendungen wird die Tiefensuche bevorzugt, da sie speicherärmer ist als andere Durchsuchungsmethoden, wie zum Beispiel die Breitensuche. Dies ist vor allem bei sehr großen und komplexen Graphen ein wichtiger Vorteil.

    Es ist zu hoffen, dass du durch diese Einführung ein besseres Grundverständnis von der Tiefensuche erlangst und in der Lage bist, ihre Prinzipien und Anwendungen zu verstehen. Die Informatik ist ein faszinierendes Feld, und die Fähigkeit, durch komplexe Daten zu navigieren, ist eine wichtige Fähigkeit, die sowohl in den Grundlagen als auch in den fortgeschrittenen Themen der Informatik essentiell ist.

    Tiefensuche vs Breitensuche: Ein Vergleich

    In der Welt der Algorithmen gibt es verschiedene Methoden zur Navigation und Durchsuchung von Datenstrukturen. Zwei der häufigsten sind Tiefensuche (Depth-First Search) und Breitensuche (Breadth-First Search). Beide haben ihre spezifischen Anwendungsbereiche und bringen ihre besonderen Vorteile und möglichen Limitationen mit sich.

    Grundlegende Unterschiede zwischen Tiefen- und Breitensuche

    Tiefensuche ist ein algorithmischer Ansatz, der einen Graphen oder Baum durchsucht, indem er zuerst einen Weg entlang der Knotenverzweigungen so weit wie möglich verfolgt, bevor er zurückverfolgt und den nächsten Weg sucht. Breitensuche hingegen ist ein Algorithmus, der zuerst alle Knoten auf gleicher Ebene untersucht, bevor es zur nächsten Ebene wechselt. Dabei werden die Knoten nacheinander von links nach rechts abgearbeitet.

    Ein geeignetes Beispiel wäre, wenn du in einem Baum oder Graphen die schnellste Route zu einem bestimmten Zielknoten finden möchtest: Die Breitensuche würde alle möglichen Pfade gleichmäßig erweitern, während die Tiefensuche einen Pfad nach dem anderen vollständig erkunden würde, bevor sie zum nächsten Pfad übergeht.

    Vor- und Nachteile von Tiefensuche und Breitensuche

    Jeder Algorithmus hat seine Stärken und Schwächen. Einige der nennenswerten Vor- und Nachteile sind:
    • Tiefensuche: Ist ein einfacher und speichereffizienter Algorithmus. Sie findet tief gelegene Knoten in einem Graphen schnell, hat aber Schwierigkeiten bei der Suche nach Knoten, die näher am Startknoten liegen. Außerdem garantiert die Tiefensuche nicht immer den kürzesten Pfad zu einem Zielknoten.
    • Breitensuche: Sie ist in der Lage, den kürzesten Weg zu einem Zielknoten zu finden und besucht zuerst die Knoten, die dem Startknoten am nächsten liegen. Allerdings benötigt die Breitensuche mehr Speicher als die Tiefensuche, da alle benachbarten Knoten gespeichert werden müssen.

    Anhang: Wann benutzt man Tiefensuche, wann Breitensuche?

    Die Wahl zwischen Breitensuche und Tiefensuche hängt stark vom Kontext und vom spezifischen Problem ab, das gelöst werden muss.
    • Tiefensuche: Sie wird oft verwendet, um alle möglichen Pfade in einem Graphen zu erkunden oder um tief gelegene Knoten schnell zu finden. Sie ist ideal für Probleme, bei denen alle Knoten durchsucht werden müssen, wie z.B. in der Erkennung von Kreisen in einem Graphen oder bei der Lösung von Labyrinthen.
    • Breitensuche: Sie ist die Methode der Wahl, wenn der kürzeste Weg zu einem Knoten gefunden werden muss oder wenn die Knoten näher am Startknoten liegen. Sie ist oft nützlich in Netzwerk-Routing-Algorithmen oder in sozialen Netzwerken, um Freunde von Freunden zu finden.

    Es gibt auch hybride Ansätze, die Breitensuche und Tiefensuche miteinander kombinieren, um die jeweiligen Stärken der einzelnen Algorithmen auszunutzen. Diese kombinierten Ansätze können in bestimmten Kontexten sehr nützlich sein, z.B. in der KI und im maschinellen Lernen.

    Tiefensuche in Graphen

    Graphen sind eine gängige Datenstruktur in der Informatik, die eine Vielzahl von realen und abstrakten Problemen modellieren kann. Sie bestehen aus Knoten, die durch Kanten verbunden sind. Die Tiefensuche ist ein gängiges Verfahren zur Navigation und Untersuchung von Graphenstrukturen.

    Tiefensuche auf Graph: Verständnis und Umsetzung

    Die Tiefensuche leitet ihren Namen vom Prozess des "Vertiefens" in den Graphen her. Beginnend bei einem Startknoten, folgt die Tiefensuche einer beliebigen benachbarten Kante zu einem noch nicht besuchten Knoten und wiederholt diesen Prozess rekursiv, bis kein ungeprüfter Knoten mehr zur Verfügung steht. Der Algorithmus kehrt dann zum vorigen Knoten zurück und folgt einer anderen Kante, falls vorhanden. Es ist wichtig zu wissen, dass die Tiefensuche nicht den kürzesten Weg zwischen zwei Knoten findet. Stattdessen ist ihr Fokus das Vorhandensein eines Pfades zu entdecken. Wenn der Graph beispielsweise einen Zyklus enthält, kann die Tiefensuche zeigen, dass dieser existiert. In der Praxis wird die Tiefensuche durch die Verwendung einer Hilfsdatenstruktur implementiert, die als Stack bezeichnet wird. Übersetzt in Code könnte das so aussehen:
    Stack stack = new Stack();
    boolean[] visited = new boolean[graph.length];
    
    stack.push(startNode);
    
    while (!stack.isEmpty()) {
      Node node = stack.pop();
      if(!visited[node.id]) {
        visited[node.id] = true;
        for (Node child : node.neighbors) {
          stack.push(child);
        }
      }
    }
    
    Der obenstehende Code zeigt einen allgemeinen Ablauf der Tiefensuche auf einem Graphen. Der Stack enthält die Knoten des Graphen, die noch erforscht werden müssen. Diese Knoten werden "gepoppt" und die benachbarten und noch nicht besuchten Knoten des "gepoppten" Knotens werden "gepusht".

    Die Rolle der Adjazenzmatrix bei der Tiefensuche in Graphen

    Eine Adjazenzmatrix ist eine rechteckige Matrix, die verwendet wird, um einen endlichen Graphen zu repräsentieren. Sie besteht aus den Elementen 0 und 1. Die Zelle in der i-ten Zeile und j-ten Spalte der Matrix entspricht der Kante zwischen den Knoten i und j.

    Eine Adjazenzmatrix hilft, die Beziehungen zwischen allen Knoten eines Graphen auf einen Blick zu sehen. Bei der Tiefensuche spielt sie eine wichtige Rolle, da sie zum Auffinden und Navigieren zwischen den Knoten verwendet wird.

    In der Implementierung der Tiefensuche kann die Adjazenzmatrix zur Überprüfung der Verbindungen zwischen den Knoten eingesetzt werden. Dies wird im folgenden Codebeispiel verdeutlicht:
    int adjMatrix[][]; //Adjazenzmatrix welche den Graphen repräsentiert
    boolean visited[];
    
    void tiefensuche(int node) {
      visited[node] = true;
      for (int i = 0; i<adjMatrix[node].length; i++) {
          if(adjMatrix[node][i] == 1 && !visited[i]) {
              tiefensuche(i);
          }
      }
    }
    
    In diesem Code-Ausschnitt wird jeder Knoten nur dann besucht, wenn er in der Adjazenzmatrix mit dem aktuellen Knoten verbunden ist und noch nicht besucht wurde. Die Adjazenzmatrix ermöglicht es somit, den Graphen effizient zu durchlaufen und informiert über die direkten Verbindungen zwischen den Knoten. Dies ist entscheidend für die korrekte Durchführung der Tiefensuche.

    Iterative Tiefensuche: Eine Alternative

    Es ist wichtig, Flexibilität bei der Wahl des richtigen Algorithmus für eine spezifische Aufgabe zu haben. In einigen Situationen kann die Tiefensuche in ihrer rekursiven Form Einschränkungen aufweisen. Ein alternativer Ansatz, der diese Einschränkungen überwindet, ist die iterative Tiefensuche.

    Was bedeutet iterative Tiefensuche?

    Die iterative Tiefensuche (IDS) ist ein Algorithmus zur Durchsuchung von Graphen und Bäumen, und sie kann als eine hybride Methode aus Tiefensuche und Breitensuche angesehen werden. Während die Standard-Tiefensuche tief in den Graphen eindringt, ohne sicher zu sein, den kürzesten Pfad zu finden und die Breitensuche alle Knoten einer Ebene besucht, bevor sie zur nächsten übergeht, kombiniert die IDS diese beiden Verfahren, um die Vorteile beider zu nutzen. Die iterative Tiefensuche verwendet eine begrenzte Tiefensuche(ein Tiefensuche-Verfahren, das auf eine bestimmte Höhe limitiert ist), die zunächst nur bis zur Tiefe 1 sucht und dann in jeder folgenden Iteration die Tiefe um 1 erhöht, bis der Zielknoten gefunden oder die maximale Tiefe erreicht ist. Auf diese Weise werden die Knoten zuerst breit und dann tief durchsucht, was die Vorteile der garantierten Kürze der Breitensuche mit der Speichereffizienz der Tiefensuche kombiniert. Gleichzeitig ermöglicht sie jedoch die Durchsuchung von Graphen mit unendlicher Tiefe, was bei der Standard-Tiefensuche zu einem Problem werden kann.

    Implementierung der iterativen Tiefensuche in Java

    In Java lässt sich die iterative Tiefensuche aufgrund der eingebauten Stack-Funktionalität gut umsetzen. Anstatt rekursive Aufrufe zu verwenden, um den nächsten zu besuchenden Knoten zu bestimmen, verwendet die iterative Version einen Stack, um den nächsten Knoten zu bestimmen. Die folgende iterative Java-Implementierung der Tiefensuche zeigt dies:
    void iterativeDFS(Node startNode) {
      Stack stack = new Stack();
      boolean[] visited = new boolean[graph.size()];
    
      stack.push(startNode);
    
      while (!stack.empty()) {
        Node node = stack.pop();
        if (!visited[node.id]) {
          visited[node.id] = true;
          for (Node child : node.neighbors) {
            if (!visited[child.id]) {
              stack.push(child);
            }
          }
        }
      }
    }
    
    Der Code beginnt damit, den Startknoten auf den Stack zu legen. Dann wird eine Schleife ausgeführt, die läuft, solange der Stack nicht leer ist. In jeder Iteration "poppt" es den obersten Knoten vom Stack und wenn dieser Knoten noch nicht besucht wurde, markiert es ihn als besucht und legt alle Nachbarknoten, die noch nicht besucht wurden, auf den Stack. Dieser iterative Ansatz ermöglicht es, auch sehr tiefe Graphen effizient zu untersuchen, ohne das Risiko eines Stack-Überlaufs, das bei der rekursiven Tiefensuche auftreten kann.

    Praktische Anwendungen der Tiefensuche

    Die Tiefensuche ist nicht nur ein theoretisches Konzept, sondern hat auch zahlreiche praktische Anwendungen in der Informatik und darüber hinaus. Es wird in Bereichen wie der künstlichen Intelligenz, Netzwerkmodellierung und Web-Crawling eingesetzt.

    Anwendungsbereiche und Beispiele für Tiefensuche in Informatik

    Ein wichtiger Anwendungsbereich der Tiefensuche ist die Erkennung von Zyklen in einem Graphen. Während der Suche kann die Tiefensuche feststellen, ob ein Knoten schon einmal besucht wurde. Wenn dieser Knoten erneut erreicht wird, dann hat der Graph einen Zyklus. Dies ist nützlich in vielen Bereichen wie beispielsweise der Erkennung von Periodizität in Zeitserien oder der Prüfung auf Zyklen in Referenzen in programmierten Objektstrukturen. Ein weiterer Bereich, in dem die Tiefensuche von besonderer Bedeutung ist, ist die Lösung von Puzzlespielen. Im Allgemeinen können Problemlösungsstrategien für Puzzles in einen Graphen umgewandelt werden, bei dem der Startzustand der Anfangsknoten ist und jeder nachfolgende Zustand ein benachbarter Knoten. Die Tiefensuche kann verwendet werden, um jeden möglichen Zustand zu untersuchen und nach einem Zielzustand zu suchen. Besonders in Spielen wie Sudoku oder dem 8-Puzzle-Spiel, bei denen Zustände erreicht werden müssen, die bestimmten Regeln folgen, hat sich die Tiefensuche als nützlich erwiesen.
     
    Funktion Tiefensuche (Knoten, Zielzustand) {
        wenn Knoten == Zielzustand dann
            return Pfad zu Knoten
        ende wenn
    
        Für jeden Nachbar von Knoten mach
            wenn Knoten noch nicht besucht wurde dann
                Markiere Knoten als besucht
                Rufe Tiefensuche rekursiv auf mit Nachbar als neuen Knoten
            ende wenn
        ende für
    }
    
    Dieser Algorithmus durchläuft rekursiv alle Knoten, die er noch nicht besucht hat, bis er den Zielzustand findet. Wenn er diesen erreicht, wird der Pfad zum Knoten zurückgegeben.

    Auswirkungen der Tiefensuche auf das Problemlösen in der Praxis

    Die Tiefensuche hat weitreichende Auswirkungen auf das Problemlösen in der Praxis. Vor allem in den Bereichen Web-Crawling und künstliche Intelligenz ist sie von besonderer Relevanz. Web-Crawler sind Programme, die das Internet durchsuchen, indem sie von einer Webseite zur nächsten springen. Sie füllen die Indexe von Suchmaschinen und sammeln Daten für Web-Analyse-Tools. Hierbei wird sehr oft die Tiefensuche eingesetzt. In diesem Fall repräsentiert jeder Knoten eine Webseite und jede Kante einen Link von einer Seite zur nächsten. Die Tiefensuche ist dabei nützlich, um das gesamte Netzwerk einer Webseite zu durchsuchen und zu indexieren. In der künstlichen Intelligenz ist die Tiefensuche ein Kernstück vieler Suche-Algorithmen. Besonders in Spielen wie Schach oder Go, wo ein Baum aller möglichen Züge aufgebaut wird, kann die Tiefensuche effektiv alle möglichen Spielverläufe untersuchen. Sie wird oft in Kombination mit Heuristiken verwendet, um die Suche in vielversprechendere Richtungen zu leiten.

    Die Heuristik ist hierbei eine Funktion, die den Algorithmus anleitet, welchen Knoten er als nächsten auswählen soll. Sie bewertet jeden Knoten basierend auf bestimmten Kriterien und priorisiert jene, welche potenziell zur Lösung führen könnten. Dies ist besonders wichtig, um die Effizienz des Algorithmus bei der Durchsuchung großer Graphen zu erhöhen.

    Durch die effiziente und umfassende Art und Weise, wie die Tiefensuche Datenstrukturen navigiert, spielt sie eine entscheidende Rolle bei der Lösung komplexer Probleme in der Praxis. Obwohl sie nicht immer die optimalste Lösung liefert, ist sie dennoch in vielen Fällen die effektivste und speichereffizienteste Option.

    Tiefensuche - Das Wichtigste

    • Tiefensuche: Algorithmischer Ansatz zur Durchsuchung von Graphen, beginnt bei einem Knoten und folgt diesem Pfad so weit wie möglich in die Tiefe, bevor andere Wege gesucht werden.
    • Tiefensuche Implementierung in Java: Knoten werden als besucht markiert und alle benachbarten Knoten, die noch nicht besucht wurden, werden rekursiv durchlaufen.
    • Anwendung der Tiefensuche: Lösung von Labyrinthen, Bestimmung der Erreichbarkeit von Knoten in einem Graph, Analyse von Netzwerken usw. Kann speicherarmer als andere Durchsuchungsmethoden sein, wie z.B. die Breitensuche.
    • Tiefensuche vs Breitensuche: Breitensuche untersucht alle Knoten auf gleicher Ebene, bevor sie zur nächsten Ebene wechselt, während Tiefensuche tief in den Graph eindringt, ohne sicher den kürzesten Pfad zu finden.
    • Tiefensuche in Graphen: Tiefensuche folgt einer beliebigen benachbarten Kante zu einem noch nicht besuchten Knoten und wiederholt diesen Prozess rekursiv, wird oft mit einer Adjazenzmatrix implementiert, um die Verbindungen zwischen Knoten zu überprüfen.
    • Iterative Tiefensuche: Alternative zur rekursiven Tiefensuche, die Einschränkungen der rekursiven Methode überwindet, indem sie einen Stack verwendet, um den nächsten zu besuchenden Knoten zu bestimmen.
    Lerne schneller mit den 13 Karteikarten zu Tiefensuche

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Tiefensuche
    Häufig gestellte Fragen zum Thema Tiefensuche
    Wann wendet man Breitensuche und Tiefensuche an?
    Breitensuche wird angewendet, wenn man nach dem kürzesten Pfad in einem ungewichteten Graphen sucht oder alle Knoten auf der gleichen Ebene inspizieren möchte. Tiefensuche wird verwendet, wenn man komplexe Strukturen, wie z.B. Baumstrukturen, vollständig durchsuchen möchte und nicht unbedingt an den kürzesten Wegen interessiert ist.
    Wie funktioniert die Tiefensuche?
    Die Tiefensuche ist ein Algorithmus, der einen Graphen systematisch durchläuft, indem er zuerst ein beliebiges Element auswählt, alle angrenzenden Elemente erkundet und dann zum nächsten Element zurückkehrt. Dieser Prozess wird fortgesetzt, bis alle Elemente besucht wurden.
    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Auf welchem Abstrakten Datentyp basiert die Tiefensuche?

    Die Tiefensuche benötigt mehr Speicher als die Breitensuche?

    Welches Prinzip wird bei der Tiefensuche angwendet?

    Weiter
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Informatik Lehrer

    • 15 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren