Determinante 3x3 Matrix – Formel
Die Formel für die Determinante einer 3x3 Matrix \(A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\) lautet:
\begin{align} \det(A)=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = & \; a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} \\ & \; - a_{31} \cdot a_{22} \cdot a_{13} - a_{32} \cdot a_{23} \cdot a_{11} - a_{33} \cdot a_{21} \cdot a_{12} \end{align}
Damit Du Dir diese Regel leichter merken bzw. selbst herleiten kannst, kannst Du Dir die Formel wie einen Gartenzaun vorstellen. Dieses Verfahren wird Regel von Sarrus genannt. Dazu schreibst Du die ersten beiden Spalten der Matrix noch einmal rechts daneben und kannst dann ein Rautenmuster einzeichnen wie in Abbildung 1.
Abb. 1 - Determinante 3x3 Matrix Formel.
Die Pfeile, die nach unten verlaufen, werden addiert und die Pfeile, die nach oben verlaufen, werden subtrahiert. Die Zahlen entlang eines Pfeils multiplizierst Du miteinander. Somit erhältst Du:
\begin{align} \definecolor{bl}{RGB}{20, 120, 200} \definecolor{gr}{RGB}{0, 220, 180} \definecolor{r}{RGB}{250, 50, 115} \definecolor{li}{RGB}{131, 99, 226} \definecolor{ge}{RGB}{255, 205, 0} \det(A)= & \; {\color{bl}a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32}} \\ & \; {\color{gr} - a_{31} \cdot a_{22} \cdot a_{13} - a_{32} \cdot a_{23} \cdot a_{11} - a_{33} \cdot a_{21} \cdot a_{12}} \end{align}
Determinante 3x3 Matrix berechnen/bestimmen
Um die Determinante einer 3x3 Matrix zu bestimmen, wendest Du eine Formel von Sarrus an.
Determinante 3x3 Matrix berechnen Aufgabe 1
Berechne die Determinante der 3x3 Matrix \(A=\begin{pmatrix} 46 & 31 & 17 \\ 48 & 69 & 40 \\ 20 & 55 & 78 \end{pmatrix}\).
Lösung
Um die Determinante zu bestimmen, schreibst Du Dir die Matrix \(A\) auf und die ersten beiden Zeilen davon nochmal daneben. Wenn es Dir hilft, kannst Du zusätzlich noch die Pfeile einzeichnen, welche Zahlen wie verrechnet werden müssen.
Abb. 2 - Determinante 3x3 Matrix berechnen.
Somit erhältst Du:
\begin{align} \det(A) & = {\color{bl}46 \cdot 69 \cdot 78 + 31 \cdot 40 \cdot 20 + 17 \cdot 48 \cdot 55} \\ & \quad \; {\color{gr} - 20 \cdot 69 \cdot 17 - 55 \cdot 40 \cdot 46 - 78 \cdot 48 \cdot 31} \\ & = 76\,528\end{align}
Determinante 3x3 Matrix Laplace
Die Determinante einer 3x3 Matrix kannst Du auch mit dem Laplaceschen Entwicklungssatz ermitteln. Mit Laplace verkleinerst Du die 3x3 Matrix auf eine 2x2 Matrix, von der Du anschließend die Determinante mit einer kurzen Formel berechnen kannst. Dabei kannst Du entweder nach einer Zeile oder einer Spalte entwickeln, das Ergebnis ist dasselbe.
Entwicklung nach i-ter Zeile | Entwicklung nach j-ter Spalte |
\[ \det(A) = \sum_{j=1}^n a_{ij} \cdot (-1)^{i+j} \cdot \det(A_{ij}) \] | \[ \det(A) = \sum_{i=1}^n a_{ij} \cdot (-1)^{i+j} \cdot \det(A_{ij}) \] |
Determinante 3x3 Matrix Laplace Aufgabe 2
Berechne die Determinante der Matrix \(A=\begin{pmatrix} 46 & 31 & 17 \\ 48 & 69 & 40 \\ 20 & 55 & 78 \end{pmatrix}\) mit dem Laplaceschen Entwicklungssatz.
Wie das genau funktioniert, findest Du in der Erklärung "Laplacescher Entwicklungssatz".
Lösung
Ob Du die Matrix nach einer Zeile oder eine Spalte entwickelst, ist egal. Hier siehst Du den Lösungsweg, wenn Du nach der ersten Spalte entwickelst. Die Formel lautet in diesem Fall:
\[ \det(A) = a_{11} \cdot (-1)^{1+1} \cdot \det(A_{11}) + a_{12} \cdot (-1)^{1+2} \cdot \det(A_{12}) + a_{13} \cdot (-1)^{1+3} \cdot \det(A_{13}) \]
- Spalte:\begin{align} \det(A_{11}) & = \begin{pmatrix} 69 & 40 \\ 55 & 78 \end{pmatrix} = 69 \cdot 78 - 55 \cdot 40 = 3 \, 182 \\[0.2cm] a_{11} & = 46 \ \, \end{align}
- Spalte:\begin{align} \det(A_{12}) & = \begin{pmatrix} 48 & 40 \\ 20 & 78 \end{pmatrix} = 48 \cdot 78 - 20 \cdot 40 = 2 \, 944 \\[0.2cm] a_{12} & = 31 \\ \, \end{align}
- Spalte:\begin{align} \det(A_{13}) & = \begin{pmatrix} 48 & 69 \\ 20 & 55 \end{pmatrix} = 48 \cdot 55 - 20 \cdot 69 = 1 \, 260 \\[0.2cm] a_{13} & = 17 \\ \, \end{align}
Somit lautet die Determinante der gesamten Matrix:
\begin{align} \det(A) & = a_{11} \cdot (-1)^{1+1} \cdot \det(A_{11}) + a_{12} \cdot (-1)^{1+2} \cdot \det(A_{12}) + a_{13} \cdot (-1)^{1+3} \cdot \det(A_{13}) \\ & = 46 \cdot (-1)^{1+1} \cdot 3 \, 182 + 31 \cdot (-1)^{1+2} \cdot 2 \, 944 + 17 \cdot (-1)^{1+3} \cdot 1 \, 260 \\ & = 46 \cdot 3 \, 182 - 31 \cdot 2\,944 + 17 \cdot 1\,260 \\ & = 76\,528 \end{align}
Inverse 3x3 Matrix Determinante
Mit der Determinante einer 3x3 Matrix kannst Du herausfinden, ob die Matrix eine Inverse besitzt oder nicht. Ist die Determinante nicht null, dann kannst Du die Matrix invertieren.
Determinante 3x3 Matrix – Das Wichtigste
- Die Determinante einer 3x3 Matrix kannst du entweder mit einer Formel oder mit dem Laplaceschen Entwicklungssatz berechnen.
- Formel:\begin{align} \det(A)=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = & \; a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} \\ & \; - a_{31} \cdot a_{22} \cdot a_{13} - a_{32} \cdot a_{23} \cdot a_{11} - a_{33} \cdot a_{21} \cdot a_{12} \end{align}
- Mit der Regel von Sarrus kannst Du Dir diese Formel besser merken bzw. selbst herleiten.Abb. 3 - Regel von Sarrus.
Nachweise
- Weller (2010). Mathematik Neue Wege SII. Arbeitsbuch. Lineare Algebra - Analytische Geometrie. Schroedel Verlag.
- Gotthard (2015). Fit für Die Oberstufe - Mathematik. Schroedel Verlag.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen