Wenn Du mit einem unechten Teiler schriftlich dividierst, dann ist der Quotient immer eine Dezimalzahl, oder eine natürliche Zahl mit Rest.
Dein neuer Fernseher kostet \(2050\,\text{€}\) und musst diesen in \(60\) Monaten abbezahlen. Wie hoch ist jede Rate? Berechne schriftlich in Deinem Heft.
Lösung
Bei der Division mit Rest gehst Du am Anfang genauso vor, wie bei der Division ohne Rest. Du nimmst Ziffern des Dividenden so lange hinzu, bis eine Zahl entsteht, die sich durch den Divisor teilen lässt. In diesem Fall ist das die Zahl \(202\).
\begin{align} {\color{#1478c8}205}0\,\text{€} : \text{60}=\end{align}
Als Nächstes teilst Du diese Zahl durch den Divisor. Hier passt die \(60\) \(3\)-mal in die \(202\). Das Ergebnis, also die \(180\), subtrahierst Du von \(202\).
\[202-180=22\]
Die Zahl \(22\) ist der Rest. Die Anzahl, mit der Du den Divisor multipliziert hast, also \(3\), schreibst Du hinter das Gleichheitszeichen.
\begin{align} &{\color{#1478c8}202}5\,\text{€}:60={\color{#1478c8}3}\\ -&{\color{#1478c8}1} {\color{#1478c8}80} \\ \hline &\,\,\,{\color{#1478c8}22} \end{align}
Dann ziehst Du die \(5\) vom ursprünglichen Dividenden herunter, sodass dort die Zahl \(225\) entsteht.
\begin{align} &202{\color{#1478c8}5}\,\text{€}:60=3\\ -&180 \\ \hline &\,\,\,22{\color{#1478c8}5} \end{align}
Im nächsten Schritt teilst Du auch diese Zahl wieder durch den Divisor, was ebenfalls \(3\) ergibt. Du schreibst also noch eine weitere \(3\) hinter das Gleichzeichen. Außerdem subtrahierst Du das Produkt von \(3\) und \(60\), also \(180\) wieder von den \(225\).
\[225-180=45\]
Die \(45\) ist jetzt dein Rest.
\begin{align} &2025\,\text{€}:60=33\\ -&180 \\ \hline &\,\,\,{\color{#1478c8}225} \\ -&\,\,{\color{#1478c8}180} \\ \hline \end{align}
Jetzt ändert sich die Vorgehensweise im Vergleich zur "normalen" schriftlichen Version. Du kannst jetzt keine Zahl mehr vom ursprünglichen Divisor herunterziehen. Grundsätzlich hast Du jetzt zwei Möglichkeiten:
- Du berechnest die Subtraktion und nennst Dein Ergebnis \(33\) mit dem Rest \(45\) oder
- Du fügst ein Komma hinter die \(33\) ein und ziehst eine \(0\) herunter. So kannst Du Dein Ergebnis mit Nachkommastellen angeben.
\begin{align} &2025\,\text{€}:60=33\\ -&180 \\ \hline &\,\,\,225 \\ -&\,\,180 \\ \hline &\,\,\,\, {\color{#1478c8}45}{\color{#00dcb4}0} \end{align}
Jetzt kannst Du wieder weitermachen wie bisher. Die \(60\) passt \(7\) mal in die \(450\). Also schreibst Du \(7\) hinter das Komma und subtrahierst \(420\) von \(450\).
\begin{align} &2025\,\text{€}:60=33{,}{\color{#1478c8}7}\\ -&180 \\ \hline &\,\,\,225 \\ -&\,\,180 \\ \hline &\,\,\,\,\, {\color{#1478c8}450} \\ -&\,\,\,\,\,{\color{#1478c8}420} \end{align}
\[450-420=30\]
Anschließend hast Du immer noch einen Rest von \(30\), Du ziehst also noch eine \(0\) herunter.
\begin{align} &2025\text{€}:60=33{,}7\\ -&180 \\ \hline &\,\,\,225 \\ -&\,\,\,180 \\ \hline &\,\,\,\,\,450 \\ -&\,\,\,\,\,420 \\ \hline &\,\,\,\,\,\,\,\,\,{\color{#1478c8}300} \end{align}
Jetzt passt die \(60\), \(5\) mal in die \(300\) und diese Rechnung ist auch ohne Rest lösbar, denn \(60\) mal \(5\) ist genau \(300\). Dein Ergebnis lautet also \(33{,}75\).
\begin{align} &2025\,\text{€}:60=33{,}75\\ -&180 \\ \hline &\,\,\,225 \\ -&\,\,\,180 \\ \hline &\,\,\,\,\,450 \\ -&\,\,\,\,\,420 \\ \hline &\,\,\,\,\,\,\,\,\,{\color{#1478c8}300} \\ -&\,\,\,\,\,\,\,\,\,{\color{#1478c8}300} \end{align}