Kehrwert

Mobile Features AB

\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Kehrwert Lehrer

  • 4 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 19.01.2023
  • 4 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 19.01.2023
  • 4 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Im Folgenden lernst Du den Kehrwert bzw. den Kehrbruch kennen. Wie Du den Kehrwert berechnest und was der Kehrwert einer Zahl mit der Multiplikation von Brüchen und Potenzen zu tun hat, wird Thema dieser Erklärung sein.

    Kehrwert und Kehrbruch bilden

    Der Kehrwert einer beliebigen Zahl \(x\) ist diejenige Zahl, die mit \(x\) multipliziert \(1\) ergibt. Die Zahl \(0\) wird dabei ausgeschlossen.

    \[x\cdot\frac{1}{x}=1\]

    In einigen Definitionen oder Aufgaben findest Du eine andere Schreibweise für den Bruch \(\frac{1}{x}\). Du kannst diesen auch als \(x^{-1}\) angeben.

    Somit gibt es zu jedem Bruch einen "Gegenspieler", dessen Produkt genau \(1\) ergibt.

    Kehrwert berechnen – Bruch

    Der Kehrwert eines Bruches wird als Kehrbruch bezeichnet. Um den Kehrbruch zu bilden, vertauschst Du den Zähler und den Nenner des angegebenen Bruches: Die Zahl über dem Bruchstrich wird mit der Zahl unter dem Bruchstrich vertauscht. Dadurch erhältst Du den Kehrwert des Bruches.

    Allgemein gilt daher:

    \[\frac{{\color{bl}a}}{{\color{gr}b}}\rightarrow\frac{{\color{gr}b}}{{\color{bl}a}}\]

    Du möchtest den Kehrwert des Bruches \(\frac{2}{3}\) bilden.

    Dazu vertauschst Du die beiden Zahlen des Bruches und erhältst dadurch den Kehrwert:

    \[\frac{{\color{bl}2}}{{\color{gr}3}}\rightarrow\frac{{\color{gr}3}}{{\color{bl}2}}\]

    Kehrwert einer Zahl

    Um den Kehrwert aus einer ganzen Zahl zu bilden, veränderst Du die angegebene ganze Zahl in eine Bruchzahl.

    Um diese zu generieren, fügst Du der ganzen Zahl einen Nenner der Größe 1 hinzu. Hierdurch wird der Wert der Zahl nicht verändert. Es ist lediglich eine andere Schreibweise.

    Du möchtest aus der Zahl \(5\) eine Bruchzahl erstellen. Dafür setzt Du den Nenner gleich \(1\) und erhältst damit eine Bruchzahl, deren Wert immer noch \(5\) ist.

    \[{\color{bl}5}\rightarrow\frac{{\color{bl}5}}{1}\]

    Aus diesem neuen Bruch kannst Du nun den Kehrwert bilden, indem Du die Zahlen des Bruches vertauscht.

    \[\frac{{\color{bl}5}}{{\color{gr}1}} \rightarrow \frac{{\color{gr}1}}{{\color{bl}5}} \]

    Kehrwert Potenz

    Den Kehrwert einer Potenz ist gegeben durch die gleiche Potenz, nur dass sich dabei das Vorzeichen des Exponenten tauscht.

    Im Allgemeinen ist der Kehrwert einer Potenz \(a^b\) mit Basis \(a\) und Exponenten \(b\) gegeben durch \(a^{-b}\).

    Dabei gilt die Rechenregel \[a^{-b} = \frac{1}{a^b}\].

    Die Potenz \(5^{3} = 125\) hat also den Kehrwert \(5^{-3}\) oder als Bruch geschrieben \(\frac{1}{5^3} = \frac{1}{125}\).

    Kehrwert multiplizieren – Division von Brüchen

    In der Bruchrechnung benötigst Du den Kehrwert eines Bruches, um eine Division zweier Brüche durchzuführen.

    Dazu multiplizierst Du den ersten Bruch mit dem Kehrwert des zweiten Bruches.

    Kehrwert berechnen – Aufgabe 1

    Berechne die folgende Divisionsaufgabe:

    \[\frac{2}{5} : \frac{1}{4} = \; ?\]

    Lösung

    Du bildest den Kehrwert aus dem zweiten Bruch \(\frac{1}{4}\) und erhältst dadurch \(\frac{4}{1}\).

    Danach multiplizierst Du den ersten Bruch \(\frac{2}{5}\) mit dem Kehrwert des zweiten Bruches \(\frac{4}{1}\) und erhältst die Multiplikation

    \[\frac{2}{5}\cdot\frac{4}{1}\]

    Jetzt werden Zähler mit Zähler und Nenner mit Nenner multipliziert und Du erhältst die Lösung der Aufgabe.

    \[\frac{2}{5}\cdot\frac{4}{1}=\frac{8}{5}\]

    Die Division eines Bruches durch einen Bruch kannst Du auch als Doppelbruch schreiben.

    Du dividierst zwei Brüche miteinander, indem Du den ersten Bruch mit dem Kehrwert des zweiten Bruches multiplizierst. Mehr dazu findest Du in der Erklärung "Doppelbrüche".

    Kehrwert und Kehrbruch – Beispiele

    Hier hast Du die Möglichkeit, die folgenden Beispiele zu berechnen.

    Kehrwert Bruch – Aufgabe 2

    Bilde den Kehrwert zu folgendem Bruch:

    \[\frac{{\color{bl}3}}{{\color{gr}5}}\]

    Lösung

    Du vertauschst Zähler und Nenner miteinander und erhältst den Kehrwert:

    \[\frac{{\color{bl}3}}{\color{gr}5}\rightarrow\frac{{\color{gr}5}}{{\color{bl}3}}\]

    Kehrwert bilden – Aufgabe 3

    Bilde den Kehrwert zur Zahl \(6\).

    Lösung

    Du generierst aus der Zahl \(6\) eine Bruchzahl, indem Du den Nenner gleich \(1\) setzt. Der Wert der Zahl ändert sich dadurch nicht!

    Du erhältst dann \(\frac{{\color{bl}6}}{{\color{gr}1}}\) und kannst jetzt Zähler und Nenner vertauschen:

    Der Kehrwert ist dementsprechend \(\frac{{\color{gr}1}}{{\color{bl}6}}\) .

    Kehrwert – Das Wichtigste

    • Um den Kehrwert eines Bruches zu bilden, werden Zähler und Nenner vertauscht.

    • Um die Division zweier Bruchzahlen durchzuführen, wird der erste Bruch mit dem Kehrwert des zweiten Bruches multipliziert.

    • Der Wert einer ganzen Zahl ändert sich nicht, wenn Ihr Nenner gleich 1 gesetzt wird.

    Lerne schneller mit den 0 Karteikarten zu Kehrwert

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Kehrwert
    Häufig gestellte Fragen zum Thema Kehrwert

    Was ist der Kehrbruch? 

    Der Kehrbruch ist der Gegenspieler einer beliebigen Bruchzahl. Das Produkt des Bruchs und seines Gegenspielers ergibt 1. Um den Kehrbruch zu bilden, werden Zähler und Nenner vertauscht.

    Was ist ein Kehrwert?

    Um den Kehrwert einer ganzen Zahl anzugeben, muss diese zunächst in eine Bruchzahl umgewandelt werden. Hierzu wird ein Nenner mimt dem Wert 1 hinzugefügt. Der Wert der Zahl ändert sich dadurch nicht. Danach können Zähler und Nenner vertauscht werden. So entsteht der Kehrwert einer ganzen Zahl.

    Warum bildet man den Kehrwert?

    Den Kehrwert einer Zahl bildet man beispielsweise bei der Division zweier Brüche. Dabei wird statt durch einen Bruch geteilt mit dem Kehrwert des Bruches multipliziert.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 4 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren