Möchtest Du wissen, wie Du ein Matrix Vektor Produkt bestimmen kannst und welche Schritte Du bei der Berechnung machen musst? In dieser Erklärung findest Du ein Beispiel zur Matrix Vektor Multiplikation, bei dem das Produkt über das Falk-Schema bestimmt wird. Außerdem erfährst Du, warum das Matrix Vektor Produkt nicht kommutativ ist und welche Reihenfolge Du beim Transponieren beachten musst.
Matrix Vektor Produkt
Um das Matrix Vektor Produkt \(A\cdot \vec{b}\) aus einer Matrix \(A\) und einem Vektor \(\vec{b}\) bestimmen zu können, muss die Spaltenanzahl der Matrix \(A\) mit der Zahl der Komponenten des Vektors \(\vec{b}\) übereinstimmen.
Bevor Du also eine Matrix \(A\) und einen Vektor \(\vec{b}\) multiplizieren kannst, musst Du zunächst überprüfen, ob sich die beiden überhaupt multiplizieren lassen. Dies ist nur möglich, wenn die Matrix \(A\) genauso viele Spalten hat wie der Vektor \(\vec{b}\) Komponenten.
\[A_{(m,\,{\color{#FA3273}n})}\,\cdot\,\vec{b}_{({\color{#FA3273}n})}\,=\,\vec{c}_{(m)}\]
Das Ergebnis der Multiplikation \(A\cdot \vec{b}\) ist der Vektor \(\vec{c}\) mit so vielen Vektorkomponenten, wie die Matrix \(A\) Zeilen besitzt.
Wenn die Voraussetzung für das Matrix Vektor Produkt erfüllt ist, kannst Du jetzt das Matrix Vektor Produkt bestimmen.
Matrix Vektor Multiplikation Beispiel – Produkt bestimmen
Das Produkt \(A\cdot \vec{b}\) der Matrix Vektor Multiplikation aus der Matrix \(\color{bl}A\) und dem Vektor \(\color{gr}\vec{b}\) wird wie folgt bestimmt:
\begin{align}{\color{bl}\begin{pmatrix} a_{1 1} & a_{1 2} & \dots & a_{1 n} \\ a_{2 1} & a_{2 2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix}} = \begin{pmatrix} {\color{bl}a_{1 1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{1 2}} \cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{1 n}} \cdot {\color{gr}b_{n}} \\ {\color{bl}a_{2 1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{2 2}}\cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{2n}} \cdot {\color{gr}b_{n}} \\\vdots \\{\color{bl}a_{m1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{m2}} \cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{mn}} \cdot {\color{gr}b_{n}}\end{pmatrix}&= {\color{r} \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix}}\end{align}
Dies führt dazu, dass die Elemente des Vektors \(\vec{c}\) über eine Summe gebildet werden, wobei jede Zeile der Matrix \(A\) einzeln mit dem Vektor \(\vec{b}\) verrechnet wird.
Eine praktische Möglichkeit zur Berechnung des Produkts ist das sogenannte Falk-Schema. Mit diesem Prinzip kannst Du die Matrix Vektor Multiplikation über eine Schritt-für-Schritt-Anleitung durchführen.
Gesucht ist das Matrix Vektor Produkt aus der Matrix \({\color{bl}A}=\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}\) und dem Vektor \({\color{gr}\vec{b}}= {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}}\).
Lösung
Die folgende Tabelle zeigt Dir eine Schritt-für-Schritt-Anleitung zur Berechnung des Matrix Vektor Produkts über das Falk-Schema.
Schritte | Erklärung und Rechnung | Grafisch |
\(1.\) Matrix und Vektor einzeichnen | Kreuz einzeichnen, wobei links unten die Matrix und rechts oben der Vektor eingetragen wird. | |
\(2.\) Ersten Eintrag des Ergebnisvektors berechnen | Erstes Vektorelement berechnen mit der ersten Zeile der Matrix und dem Vektor. \[{\color{r}c_1}= {\color{bl}3} \cdot{\color{gr}7} + {\color{bl}5} \cdot{\color{gr}1} + {\color{bl}9} \cdot {\color{gr}4} =\color{r}62 \] | |
\(3.\) Zweiten Eintrag des Ergebnisvektors berechnen | Zweites Vektorelement analog zum Schritt zuvor bestimmen. \[{\color{r}c_2}={\color{bl}3} \cdot {\color{gr}7} +{\color{bl}1}\cdot {\color{gr}1} + {\color{bl}2}\cdot {\color{gr}4} =\color{r} 30\] | |
\(4.\) Matrix Vektor Produkt aufschreiben | \[{\color{r}\vec{c}}={\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} = {\color{r} \begin{pmatrix} 62 \\ 30 \end{pmatrix}} \] | |
Multiplizierst Du Matrizen und Vektoren, so musst Du einige Rechenregeln beachten.
Matrix Vektor Multiplikation Reihenfolge – Regeln
Die Reihenfolge der Matrix Vektor Multiplikation wird durch einige Rechengesetze beeinflusst. So ist das Matrix Vektor Produkt assoziativ, distributiv, aber nicht kommutativ, vorausgesetzt die Multiplikation ist möglich.
Mit den Matrizen \(A\) und \(B\) sowie den Vektoren \(\vec{u}\) und \(\vec{v}\) gilt:
Kein Kommutativgesetz: \[ {\color{bl}A} \cdot {\color{ge}B} \neq {\color{ge}B} \cdot {\color{bl}A} \]
Assoziativgesetz: \[ {\color{bl}A} \cdot \left( {\color{ge}B} \cdot {\color{gr}\vec{u}}\right) = \left({\color{bl}A} \cdot {\color{ge}B} \right) \cdot{\color{gr}\vec{u}}\]
Distributivgesetz:\begin{align}({\color{bl}A}+{\color{ge}B})\cdot {\color{gr}\vec{u}} ={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{ge}B}\cdot \color{gr}\vec{u}\\[0.2cm]{\color{bl}A}\cdot ({\color{gr}\vec{u}}+{\color{li}\vec{v}})={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{bl}A}\cdot {\color{li}\vec{v}}\end{align}
Transponieren: \[\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\]
Warum die Matrix Vektor Multiplikation nicht kommutativ ist, zeigt Dir das folgende Beispiel.
Matrix Vektor Multiplikation nicht kommutativ – Beispiel
Die Matrix Vektor Multiplikation ist nicht kommutativ! Das heißt, die Reihenfolge darf bei der Produktbildung nicht vertauscht werden. Dies kannst Du am besten an einem Beispiel sehen:
Im Abschnitt Matrix Vektor Multiplikation Beispiel hast Du folgendes Matrix Vektor Produkt berechnet:
\begin{align}A\cdot \vec{b}={\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} &= {\color{r} \begin{pmatrix} 62 \\ 30 \end{pmatrix}} \end{align}
Wenn Du nun die Matrix \(A\) und Vektor \(\vec{b}\) vertauschen würdest, kann das Produkt nicht mehr berechnet werden. Hier stimmt die Spaltenanzahl des Vektors \(\vec{b}\) nicht mit der Zeilenanzahl der Matrix \(A\) überein.
\begin{align}\vec{b}\cdot A={\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} \cdot{\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \Rightarrow \textbf{ungültig}\end{align}
Die Voraussetzung für die Vektor Matrix Multiplikation ist somit nicht mehr erfüllt.
Soll das Matrix Vektor Produkt transponiert werden, musst Du ebenfalls auf die Reihenfolge achten. Sieh Dir dazu die folgende Vertiefung an!
Matrix Vektor Produkt transponiert – Beispiel
Das Matrix Vektor Produkt wird transponiert, indem entweder das Produkt erst nach der Multiplikation transponiert wird, oder die Matrix und der Vektor zuerst transponiert und anschließend multipliziert werden. Dabei wird aber die Reihenfolge vertauscht, da gilt:
\[\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\]
Gesucht ist das transponierte Matrix Vektor Produkt \(\left({\color{bl}A}\cdot {\color{gr}\vec{b}}\right)^{\,T}\). Wird erst multipliziert und dann transponiert, erhältst Du:
\[\left({\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} \right)^{\,T}={\color{r} \begin{pmatrix} 62\\ 30 \end{pmatrix}}^T={\color{r} \begin{pmatrix} 62 & 30 \end{pmatrix}}\]
Alternativ können auch die Matrix und der Vektor zuerst transponiert und dann multipliziert werden, indem der Vektor \(\vec{b}\) und die Matrix \(A\) vertauscht werden.
\begin{align}{\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}}^T\cdot {\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}}^{T}&=\\{\color{gr}\begin{pmatrix} 7 & 1 & 4 \end{pmatrix}} \cdot {\color{bl}\begin{pmatrix} 3 & 3 \\ 5 & 1 \\9 & 2 \\\end{pmatrix}} &= {\color{r} \begin{pmatrix} 62 & 30 \end{pmatrix}} \end{align}
Noch mehr Übungsaufgaben zur Matrix Vektor Multiplikation findest Du in den zugehörigen Karteikarten.
Matrix Vektor Multiplikation – Das Wichtigste
- Um das Matrix Vektor Produkt \(A\cdot \vec{b}\) aus einer Matrix \(A\) und einem Vektor \(\vec{b}\) bestimmen zu können, muss die Spaltenanzahl der Matrix \(A\) mit der Zahl der Komponenten des Vektors \(\vec{b}\) übereinstimmen.\[A_{(m,\,{\color{#FA3273}n})}\,\cdot\,\vec{b}_{({\color{#FA3273}n})}\,=\,\vec{c}_{(m)}\]
- Das Ergebnis der Multiplikation \(A\cdot \vec{b}\) ist der Vektor \(\vec{c}\) mit so vielen Vektorkomponenten, wie die Matrix \(A\) Zeilen besitzt.
- Um das Produkt zu bestimmen, bietet das Falk-Schema eine praktische Berechnungsmöglichkeit.
- Für die Reihenfolge gelten bei der Multiplikation Matrizen \(A\) und \(B\) sowie den Vektoren \(\vec{u}\) und \(\vec{v}\) folgende Rechenregeln:
- Kein Kommutativgesetz: \( {\color{bl}A} \cdot {\color{ge}B} \neq {\color{ge}B} \cdot {\color{bl}A} \)
Assoziativgesetz: \( {\color{bl}A} \cdot \left( {\color{ge}B} \cdot {\color{gr}\vec{u}}\right) = \left({\color{bl}A} \cdot {\color{ge}B} \right) \cdot{\color{gr}\vec{u}}\)
Distributivgesetz: \(({\color{bl}A}+{\color{ge}B})\cdot {\color{gr}\vec{u}} ={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{ge}B}\cdot \color{gr}\vec{u}\hspace{1cm}{\color{bl}A}\cdot ({\color{gr}\vec{u}}+{\color{li}\vec{v}})={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{bl}A}\cdot {\color{li}\vec{v}}\)
Transponieren: \(\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\)
Nachweise
- Kirchgessner; Schreck (2012). Vektor- und Matrizenrechnung Für Dummies: Willkommen in der Matrix. Wiley-VCH GmbH.
- Adamy; Voigt (2007). Formelsammlung der Matrizenrechnung. Oldenbourg Wissenschaftsverlag.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen