Springe zu einem wichtigen Kapitel
Möchtest Du wissen, wie Du ein Matrix Vektor Produkt bestimmen kannst und welche Schritte Du bei der Berechnung machen musst? In dieser Erklärung findest Du ein Beispiel zur Matrix Vektor Multiplikation, bei dem das Produkt über das Falk-Schema bestimmt wird. Außerdem erfährst Du, warum das Matrix Vektor Produkt nicht kommutativ ist und welche Reihenfolge Du beim Transponieren beachten musst.
Matrix Vektor Produkt
Um das Matrix Vektor Produkt \(A\cdot \vec{b}\) aus einer Matrix \(A\) und einem Vektor \(\vec{b}\) bestimmen zu können, muss die Spaltenanzahl der Matrix \(A\) mit der Zahl der Komponenten des Vektors \(\vec{b}\) übereinstimmen.
Bevor Du also eine Matrix \(A\) und einen Vektor \(\vec{b}\) multiplizieren kannst, musst Du zunächst überprüfen, ob sich die beiden überhaupt multiplizieren lassen. Dies ist nur möglich, wenn die Matrix \(A\) genauso viele Spalten hat wie der Vektor \(\vec{b}\) Komponenten.
\[A_{(m,\,{\color{#FA3273}n})}\,\cdot\,\vec{b}_{({\color{#FA3273}n})}\,=\,\vec{c}_{(m)}\]
Das Ergebnis der Multiplikation \(A\cdot \vec{b}\) ist der Vektor \(\vec{c}\) mit so vielen Vektorkomponenten, wie die Matrix \(A\) Zeilen besitzt.
In den Erklärungen „Matrizen“ und „Matrizenrechnung“ kannst Du alles rund um die Matrix nachlesen.
Wenn die Voraussetzung für das Matrix Vektor Produkt erfüllt ist, kannst Du jetzt das Matrix Vektor Produkt bestimmen.
Matrix Vektor Multiplikation Beispiel – Produkt bestimmen
Das Produkt \(A\cdot \vec{b}\) der Matrix Vektor Multiplikation aus der Matrix \(\color{bl}A\) und dem Vektor \(\color{gr}\vec{b}\) wird wie folgt bestimmt:
\begin{align}{\color{bl}\begin{pmatrix} a_{1 1} & a_{1 2} & \dots & a_{1 n} \\ a_{2 1} & a_{2 2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix}} = \begin{pmatrix} {\color{bl}a_{1 1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{1 2}} \cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{1 n}} \cdot {\color{gr}b_{n}} \\ {\color{bl}a_{2 1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{2 2}}\cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{2n}} \cdot {\color{gr}b_{n}} \\\vdots \\{\color{bl}a_{m1}} \cdot {\color{gr}b_{1}} + {\color{bl}a_{m2}} \cdot {\color{gr}b_{2}} + \dots + {\color{bl}a_{mn}} \cdot {\color{gr}b_{n}}\end{pmatrix}&= {\color{r} \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix}}\end{align}
Dies führt dazu, dass die Elemente des Vektors \(\vec{c}\) über eine Summe gebildet werden, wobei jede Zeile der Matrix \(A\) einzeln mit dem Vektor \(\vec{b}\) verrechnet wird.
Eine praktische Möglichkeit zur Berechnung des Produkts ist das sogenannte Falk-Schema. Mit diesem Prinzip kannst Du die Matrix Vektor Multiplikation über eine Schritt-für-Schritt-Anleitung durchführen.
Gesucht ist das Matrix Vektor Produkt aus der Matrix \({\color{bl}A}=\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}\) und dem Vektor \({\color{gr}\vec{b}}= {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}}\).
Lösung
Die folgende Tabelle zeigt Dir eine Schritt-für-Schritt-Anleitung zur Berechnung des Matrix Vektor Produkts über das Falk-Schema.
Schritte | Erklärung und Rechnung | Grafisch |
\(1.\) Matrix und Vektor einzeichnen | Kreuz einzeichnen, wobei links unten die Matrix und rechts oben der Vektor eingetragen wird. | |
\(2.\) Ersten Eintrag des Ergebnisvektors berechnen | Erstes Vektorelement berechnen mit der ersten Zeile der Matrix und dem Vektor. \[{\color{r}c_1}= {\color{bl}3} \cdot{\color{gr}7} + {\color{bl}5} \cdot{\color{gr}1} + {\color{bl}9} \cdot {\color{gr}4} =\color{r}62 \] | |
\(3.\) Zweiten Eintrag des Ergebnisvektors berechnen | Zweites Vektorelement analog zum Schritt zuvor bestimmen. \[{\color{r}c_2}={\color{bl}3} \cdot {\color{gr}7} +{\color{bl}1}\cdot {\color{gr}1} + {\color{bl}2}\cdot {\color{gr}4} =\color{r} 30\] | |
\(4.\) Matrix Vektor Produkt aufschreiben | \[{\color{r}\vec{c}}={\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} = {\color{r} \begin{pmatrix} 62 \\ 30 \end{pmatrix}} \] |
Multiplizierst Du Matrizen und Vektoren, so musst Du einige Rechenregeln beachten.
Matrix Vektor Multiplikation Reihenfolge – Regeln
Die Reihenfolge der Matrix Vektor Multiplikation wird durch einige Rechengesetze beeinflusst. So ist das Matrix Vektor Produkt assoziativ, distributiv, aber nicht kommutativ, vorausgesetzt die Multiplikation ist möglich.
Mit den Matrizen \(A\) und \(B\) sowie den Vektoren \(\vec{u}\) und \(\vec{v}\) gilt:
Kein Kommutativgesetz: \[ {\color{bl}A} \cdot {\color{ge}B} \neq {\color{ge}B} \cdot {\color{bl}A} \]
Assoziativgesetz: \[ {\color{bl}A} \cdot \left( {\color{ge}B} \cdot {\color{gr}\vec{u}}\right) = \left({\color{bl}A} \cdot {\color{ge}B} \right) \cdot{\color{gr}\vec{u}}\]
Distributivgesetz:\begin{align}({\color{bl}A}+{\color{ge}B})\cdot {\color{gr}\vec{u}} ={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{ge}B}\cdot \color{gr}\vec{u}\\[0.2cm]{\color{bl}A}\cdot ({\color{gr}\vec{u}}+{\color{li}\vec{v}})={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{bl}A}\cdot {\color{li}\vec{v}}\end{align}
Transponieren: \[\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\]
Warum die Matrix Vektor Multiplikation nicht kommutativ ist, zeigt Dir das folgende Beispiel.
Matrix Vektor Multiplikation nicht kommutativ – Beispiel
Die Matrix Vektor Multiplikation ist nicht kommutativ! Das heißt, die Reihenfolge darf bei der Produktbildung nicht vertauscht werden. Dies kannst Du am besten an einem Beispiel sehen:
Im Abschnitt Matrix Vektor Multiplikation Beispiel hast Du folgendes Matrix Vektor Produkt berechnet:
\begin{align}A\cdot \vec{b}={\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} &= {\color{r} \begin{pmatrix} 62 \\ 30 \end{pmatrix}} \end{align}
Wenn Du nun die Matrix \(A\) und Vektor \(\vec{b}\) vertauschen würdest, kann das Produkt nicht mehr berechnet werden. Hier stimmt die Spaltenanzahl des Vektors \(\vec{b}\) nicht mit der Zeilenanzahl der Matrix \(A\) überein.
\begin{align}\vec{b}\cdot A={\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} \cdot{\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \Rightarrow \textbf{ungültig}\end{align}
Die Voraussetzung für die Vektor Matrix Multiplikation ist somit nicht mehr erfüllt.
Soll das Matrix Vektor Produkt transponiert werden, musst Du ebenfalls auf die Reihenfolge achten. Sieh Dir dazu die folgende Vertiefung an!
Matrix Vektor Produkt transponiert – Beispiel
Das Matrix Vektor Produkt wird transponiert, indem entweder das Produkt erst nach der Multiplikation transponiert wird, oder die Matrix und der Vektor zuerst transponiert und anschließend multipliziert werden. Dabei wird aber die Reihenfolge vertauscht, da gilt:
\[\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\]
Gesucht ist das transponierte Matrix Vektor Produkt \(\left({\color{bl}A}\cdot {\color{gr}\vec{b}}\right)^{\,T}\). Wird erst multipliziert und dann transponiert, erhältst Du:
\[\left({\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}} \cdot {\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}} \right)^{\,T}={\color{r} \begin{pmatrix} 62\\ 30 \end{pmatrix}}^T={\color{r} \begin{pmatrix} 62 & 30 \end{pmatrix}}\]
Alternativ können auch die Matrix und der Vektor zuerst transponiert und dann multipliziert werden, indem der Vektor \(\vec{b}\) und die Matrix \(A\) vertauscht werden.
\begin{align}{\color{gr}\begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}}^T\cdot {\color{bl}\begin{pmatrix} 3 & 5 & 9 \\ 3 & 1 & 2 \\\end{pmatrix}}^{T}&=\\{\color{gr}\begin{pmatrix} 7 & 1 & 4 \end{pmatrix}} \cdot {\color{bl}\begin{pmatrix} 3 & 3 \\ 5 & 1 \\9 & 2 \\\end{pmatrix}} &= {\color{r} \begin{pmatrix} 62 & 30 \end{pmatrix}} \end{align}
Noch mehr Übungsaufgaben zur Matrix Vektor Multiplikation findest Du in den zugehörigen Karteikarten.
Matrix Vektor Multiplikation – Das Wichtigste
- Um das Matrix Vektor Produkt \(A\cdot \vec{b}\) aus einer Matrix \(A\) und einem Vektor \(\vec{b}\) bestimmen zu können, muss die Spaltenanzahl der Matrix \(A\) mit der Zahl der Komponenten des Vektors \(\vec{b}\) übereinstimmen.\[A_{(m,\,{\color{#FA3273}n})}\,\cdot\,\vec{b}_{({\color{#FA3273}n})}\,=\,\vec{c}_{(m)}\]
- Das Ergebnis der Multiplikation \(A\cdot \vec{b}\) ist der Vektor \(\vec{c}\) mit so vielen Vektorkomponenten, wie die Matrix \(A\) Zeilen besitzt.
- Um das Produkt zu bestimmen, bietet das Falk-Schema eine praktische Berechnungsmöglichkeit.
- Für die Reihenfolge gelten bei der Multiplikation Matrizen \(A\) und \(B\) sowie den Vektoren \(\vec{u}\) und \(\vec{v}\) folgende Rechenregeln:
- Kein Kommutativgesetz: \( {\color{bl}A} \cdot {\color{ge}B} \neq {\color{ge}B} \cdot {\color{bl}A} \)
Assoziativgesetz: \( {\color{bl}A} \cdot \left( {\color{ge}B} \cdot {\color{gr}\vec{u}}\right) = \left({\color{bl}A} \cdot {\color{ge}B} \right) \cdot{\color{gr}\vec{u}}\)
Distributivgesetz: \(({\color{bl}A}+{\color{ge}B})\cdot {\color{gr}\vec{u}} ={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{ge}B}\cdot \color{gr}\vec{u}\hspace{1cm}{\color{bl}A}\cdot ({\color{gr}\vec{u}}+{\color{li}\vec{v}})={\color{bl}A}\cdot {\color{gr}\vec{u}}+{\color{bl}A}\cdot {\color{li}\vec{v}}\)
Transponieren: \(\left({\color{bl}A}\cdot {\color{gr}\vec{u}}\right)^{\,T} = {\color{gr}\vec{u}}^{\,T} \cdot {\color{bl}A}^{\,T}\)
Nachweise
- Kirchgessner; Schreck (2012). Vektor- und Matrizenrechnung Für Dummies: Willkommen in der Matrix. Wiley-VCH GmbH.
- Adamy; Voigt (2007). Formelsammlung der Matrizenrechnung. Oldenbourg Wissenschaftsverlag.
Lerne mit 4 Matrix Vektor Multiplikation Karteikarten in der kostenlosen StudySmarter App
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Matrix Vektor Multiplikation
Kann eine Matrix mit einem Vektor multipliziert werden?
Eine Matrix kann nur mit einem Vektor multipliziert werden, wenn die Spaltenanzahl der Matrix mit der Zahl der Komponenten des Vektors übereinstimmt.
Wie wird ein Vektor mit einer Matrix multipliziert?
Kann eine Matrix mit einem Vektor multipliziert werden, so werden die Elemente des Ergebnisvektors über eine Summe gebildet, wobei jede Zeile der Matrix einzeln mit dem Vektor verrechnet wird. Das Falk-Schema bietet eine praktische Berechnungsmöglichkeit.
Ist die Matrix Vektor Multiplikation kommutativ?
Nein, die Vektor Matrix Multiplikation ist nicht kommutativ. Die Reihenfolge bei der Multiplikation ist entscheidend.
Ist ein Vektor eine Matrix in Mathe?
Ein Vektor ist eine spezielle Matrix mit einer Spalte (Spaltenvektor) oder einer Zeile (Zeilenvektor).
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr