Matrizen addieren Voraussetzung
Die Addition zweier Matrizen \(A\) und \(B\) kann nur über den gleichen Typ \((m,\,n)\) (gleiche Zeilen- und Spaltenanzahl beider Matrizen) erfolgen.
Eine Matrix \(A\) besitzt eine gewisse Anzahl an Zeilen und Spalten, die den Typ der Matrix beschreiben. So lässt sich eine \((m,\,n)\)-Matrix allgemein mit \(m\) Zeilen und \(n\) Spalten angeben.
Laut der Definition kannst Du demnach zwei Matrizen nur miteinander addieren, wenn sie dieselbe Zeilenanzahl und dieselbe Spaltenanzahl besitzen.
Alles rund um die Matrix kannst Du in der Erklärung „Matrizen“ nachlesen.
Eine \((2,\,3)\)-Matrix lässt sich nur mit einer \((2,\,3)\)-Matrix addieren, wie zum Beispiel die Matrizen \(A\) und \(B\).
\[A=\left(\begin{array}{ccc} 1&1&3 \\ 2&1&4\end{array}\right) \hspace{2cm}B=\left(\begin{array}{ccc} 1&0&1 \\ 1&3&2\end{array}\right)\]
Beide Matrizen besitzen \(2\) Zeilen und \(3\) Spalten.
Hast Du überprüft, ob sich zwei gegebene Matrizen addieren lassen (also vom gleichen Typ sind), dann kannst Du mit der Berechnung der Werte fortfahren.
Matrizen addieren einfach erklärt – Matrizen addieren
Zwei gleichartige Matrizen \(A\) und \(B\) werden durch elementweises Addieren der Matrixelemente addiert und bringen als Ergebnis eine Summenmatrix \(C\) vom gleichen Typ \((m,\,n)\) hervor.
\[C=A+B\]
Um die beiden Matrizen \(A\) und \(B\) zu addieren, musst Du also jedes Matrixelement der Matrix \(A\) mit dem entsprechenden Matrixelement der Matrix \(B\) addieren.
Damit Du die Berechnung nachvollziehen kannst, zeigt das nächste Kapitel die Vorgehensweise der Berechnung allgemein für eine \((2,\,3)\)-Matrix.
Matrizen addieren 2x3 – Beispiel
Die Addition der Matrixelemente ist für zwei allgemeine Matrizen \(A\) und \(B\) des Typs \((2,\,3)\) dargestellt.
\begin{align}A\hspace{1.6cm}&+\hspace{1.6cm} B \hspace{1.6cm} = \hspace{3cm} C\\[0.3cm]\left(\begin{array}{ccc} {\color{#1478C8} a_{11}}&{\color{#00DCB4}a_{12}}&{\color{#FA3273}a_{13}} \\[0.1cm]{\color{#8363E2}a_{21}}&{\color{#FFCD00}a_{22}}&{\color{#5E7387}a_{23}}\end{array}\right) &+\left(\begin{array}{ccc} {\color{#1478C8}b_{11}}&{\color{#00DCB4}b_{12}}&{\color{#FA3273}b_{13}} \\[0.1cm] {\color{#8363E2}b_{21}}&{\color{#FFCD00}b_{22}}&{\color{#5E7387}b_{23}}\end{array}\right) = \left(\begin{array}{ccc} {\color{#1478C8} a_{11}+b_{11}}&{\color{#00DCB4}a_{12}+b_{12}}&{\color{#FA3273}a_{13}+b_{13}}\\[0.1cm] {\color{#8363E2}a_{21}+b_{21}}&{\color{#FFCD00}a_{22}+b_{22}}&{\color{#5E7387}a_{23}+b_{23}}\end{array}\right)\end{align}
Wie Du sehen kannst, sind die jeweiligen Matrixelemente farblich markiert, die miteinander addiert werden müssen. Das nachfolgende Beispiel zeigt Dir ein kurzes Beispiel der Berechnung.
Addiert werden sollen die Matrizen \(A\) und \(B\) zur Summenmatrix \(C\).
\[A=\left(\begin{array}{ccc} 1&1&3 \\ 2&1&4\end{array}\right) \hspace{2cm}B=\left(\begin{array}{ccc} 1&0&1 \\ 1&3&2\end{array}\right)\]
Auch hier soll die farbliche Markierung als Hilfestellung dienen.
\begin{align}A\hspace{1cm}&+\hspace{1cm} B \hspace{1.1cm} = \hspace{2cm} C\\[0.3cm]\left(\begin{array}{ccc} {\color{#1478C8} 1}&{\color{#00DCB4}1}&{\color{#FA3273}3} \\{\color{#8363E2}2}&{\color{#FFCD00}1}&{\color{#5E7387}4}\end{array}\right) &+\left(\begin{array}{ccc} {\color{#1478C8}1}&{\color{#00DCB4}0}&{\color{#FA3273}1} \\ {\color{#8363E2}1}&{\color{#FFCD00}3}&{\color{#5E7387}2}\end{array}\right) = \left(\begin{array}{ccc} {\color{#1478C8} 1+1}&{\color{#00DCB4}1+0}&{\color{#FA3273}3+1}\\{\color{#8363E2}2+1}&{\color{#FFCD00}1+3}&{\color{#5E7387}4+2}\end{array}\right)\end{align}
Somit ergibt sich für die Summenmatrix \(C\):
\begin{align}C=A+B=\left(\begin{array}{ccc} {\color{#1478C8} 2}&{\color{#00DCB4}1}&{\color{#FA3273}4} \\{\color{#8363E2}3}&{\color{#FFCD00}4}&{\color{#5E7387}6}\end{array}\right)\end{align}
Auch bei Matrizen musst Du verschiedene Rechenregeln beachten.
Matrizen addieren Regeln
Um zwei Matrizen addieren zu können, müssen sie denselben Typ \((m,\,n)\) besitzen. Außerdem sind bei der Addition noch weitere Rechenregeln zu beachten.
Rechenregeln bei der Addition von Matrizen \(A\), \(B\) und \(C\) des gleichen Typs \((m,\,n)\):
Kommutativgesetz: \[A+B=B+A\]
Assoziativgesetz: \[(A+B)+C=A+(B+C)\]
Transponieren: \[(A+B)^T=A^T+B^T\]
Die Addition zweier \((2,\,3)\)-Matrizen hast Du bereits kennengelernt. Aber wie verhalten sich beispielsweise quadratische Matrizen bei der Addition oder spezielle Matrizen wie die Einheitsmatrix oder die Diagonalmatrix?
Besondere Matrizen addieren
Egal, ob es sich bei den zwei zu addierenden Matrizen um schiefe Matrizen, symmetrische Matrizen oder auch um quadratische Matrizen handelt, die Vorgehensweise der Berechnung bleibt gleich. Sieh Dir dazu die folgenden Beispiele an.
Quadratische Matrizen addieren – 3x3
Quadratische Matrizen besitzen genau so viele Zeilen wie Spalten, wie beispielsweise eine \((3,\,3)\)-Matrix.
Quadratische Matrizen addieren – Aufgabe 1
Bestimme die Summenmatrix \(C\) aus den Matrizen \(A\) und \(B\) mit:
\[A=\left(\begin{array}{ccc} 1&1&3 \\ 2&1&4 \\ 0&1&-1\end{array}\right) \hspace{2cm}B=\left(\begin{array}{ccc} 1&0&1 \\ 1&3&2\\-2&1&0\end{array}\right)\]
Lösung
Die Matrizen werden elementweise miteinander addiert, wodurch sich die Summenmatrix \(C\) ergibt:
\begin{align}C=A+B&=\left(\begin{array}{ccc} 1+1&1+0& 3+1\\ 2+1&1+3&4+2 \\ 0+(-2)&1+1&(-1)+0\end{array}\right)\\[0.4cm]&=\left(\begin{array}{ccc} 2&1&4 \\ 3&4&6 \\ -2&2&-1\end{array}\right)\end{align}
Diagonalmatrizen sind ebenfalls quadratische Matrizen, deren Matrixelemente aber nur entlang der Hauptdiagonalen verschiedene Zahlenwerte besitzen. Alle anderen Matrixelemente sind \(0\). Eine Sonderform der Diagonalmatrix ist die Einheitsmatrix. Sie besitzt entlang der Hauptdiagonalen Elemente mit dem Wert \(1\).
Quadratische Matrizen addieren – Aufgabe 2
Addiere die Diagonalmatrix \(D\) mit der Einheitsmatrix \(E\).
\[D=\left(\begin{array}{ccc} -2&0&0 \\ 0&3&0 \\ 0&0&-1\end{array}\right) \hspace{2cm}E=\left(\begin{array}{ccc} 1&0&0 \\ 0&1&0\\0&0&1\end{array}\right)\]
Lösung
Auch in diesem Fall kannst Du die Berechnung schrittweise nach der gleichen Vorgehensweise durchführen.
\begin{align}D+E&=\left(\begin{array}{ccc} {\color{#1478C8}-2+1}&0+0& 0+0\\ 0+0&{\color{#1478C8}3+1}&0+0 \\ 0+0&0+0&{\color{#1478C8}(-1)+1}\end{array}\right)\\[0.4cm]&=\left(\begin{array}{ccc} {\color{#1478C8}-1}&0&0 \\ 0&{\color{#1478C8}4}& \\ 0&0&{\color{#1478C8}0}\end{array}\right)\end{align}
In der Erklärung „Besondere Matrizen“ kannst Du Dir alle Eigenschaften zu den speziellen Matrizen ansehen.
Hast Du Lust, direkt noch ein paar Übungsaufgaben zur Addition von Matrizen zu meistern? Dann los!
Matrizen addieren – Aufgaben
Bevor Du die Addition der Matrizen beginnst, überprüfe zunächst, ob die Voraussetzung für eine Berechnung erfüllt ist. Sie müssen dieselbe Zeilen- und Spaltenanzahl aufweisen.
Matrizen addieren – Aufgabe 3
Ermittle, welche Matrizen-Paare addiert werden können.
\[A=\left(\begin{array}{cc} -2&1&0 \\ -4&3&-1\end{array}\right) \hspace{0.5cm}B=\left(\begin{array}{cc} 4&3 \\ 1&3\end{array}\right)\hspace{0.5cm}C=\left(\begin{array}{ccc} 0&2 \\ 1&-3 \\2&-1\end{array}\right)\hspace{0.5cm}D=\left(\begin{array}{cc} -3&0 \\ 0&6\end{array}\right)\hspace{0.5cm}E=\left(\begin{array}{cc} 1&0 \\ 0&1\end{array}\right)\]
Lösung
Es lassen sich lediglich die Matrizen \(B\), \(D\) und \(E\) miteinander addieren. Demnach sind folgende Berechnungen möglich:
\[B+D\,(oder\,D+B) \hspace{2cm} B+E\,(oder\,E+B)\hspace{2cm}D+E\,(oder\,E+D)\]
Matrizen addieren – Aufgabe 4
Bestimme die fehlenden Matrixelemente der folgenden Addition.
\begin{align}\left(\begin{array}{cc} 4&-2 \\ -5&5 \\ 3&{\color{#FA3273}a_{32}}\end{array}\right)+\left(\begin{array}{cc} 0&-3 \\ {\color{#00DCB4}b_{21}}&7 \\ 6&-3\end{array}\right)=\left(\begin{array}{cc} 4&{\color{#1478C8}c_{12}} \\ 2&12 \\ 9&-4\end{array}\right)\end{align}
Lösung
Durch das elementweise Addieren ergibt sich für die fehlenden Matrixelemente:
\begin{align}-2+(-3)&={\color{#1478C8}c_{12}} \hspace{1cm} &\rightarrow {\color{#1478C8}c_{12}}&=-5\\[0.1cm]-5+{\color{#00DCB4}b_{21}}&=2 &\rightarrow {\color{#00DCB4}b_{21}}&=7\\[0.1cm]{\color{#FA3273}a_{32}}+(-3)&=-4 &\rightarrow {\color{#FA3273}a_{32}}&=-1\end{align}
In den zugehörigen Karteikarten findest Du noch weitere Übungsaufgaben, um das Thema Matrizen addieren weiter zu vertiefen.
Matrizen addieren – Das Wichtigste
- Die Addition zweier Matrizen \(A\) und \(B\) kann nur über den gleichen Typ \((m,\,n)\) erfolgen. Somit muss die Zeilen- und Spaltenanzahl beider Matrizen identisch sein.
- Zwei gleichartige Matrizen \(A\) und \(B\) werden durch elementweises Addieren der Matrixelemente addiert und bringen als Ergebnis eine Summenmatrix \(C\) vom gleichen Typ \((m,\,n)\) hervor.
\[C=A+B\]
Für die Addition zweier \((2,\,3)\)-Matrizen gilt:
\begin{align}A\hspace{1.6cm}&+\hspace{1.6cm} B \hspace{1.6cm} = \hspace{3cm} C\\[0.3cm]\left(\begin{array}{ccc} {\color{#1478C8} a_{11}}&{\color{#00DCB4}a_{12}}&{\color{#FA3273}a_{13}} \\[0.1cm]{\color{#8363E2}a_{21}}&{\color{#FFCD00}a_{22}}&{\color{#5E7387}a_{23}}\end{array}\right) &+\left(\begin{array}{ccc} {\color{#1478C8}b_{11}}&{\color{#00DCB4}b_{12}}&{\color{#FA3273}b_{13}} \\[0.1cm] {\color{#8363E2}b_{21}}&{\color{#FFCD00}b_{22}}&{\color{#5E7387}b_{23}}\end{array}\right) = \left(\begin{array}{ccc} {\color{#1478C8} a_{11}+b_{11}}&{\color{#00DCB4}a_{12}+b_{12}}&{\color{#FA3273}a_{13}+b_{13}}\\[0.1cm] {\color{#8363E2}a_{21}+b_{21}}&{\color{#FFCD00}a_{22}+b_{22}}&{\color{#5E7387}a_{23}+b_{23}}\end{array}\right)\end{align}
Bei der Addition gelten außerdem das Kommutativgesetz und das Assoziativgesetz.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen