Rechnen mit Größen

Du hilfst Deinem Opa beim Sortieren der Einkäufe. In der Einkaufstasche sind 5 Birnen und 6 Äpfel. Deine Oma fragt, wie viele Früchte er diesmal für das Geld mitgebracht hat. Wenn Du die Gesamtzahl angeben willst, dann musst Du fragen, wie viele Früchte es insgesamt sind. Dann kannst Du sagen, dass es 11 Früchte sind.

Los geht’s

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Rechnen mit Größen Lehrer

  • 15 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Du kannst aber nicht sagen: Es sind 11 Birnen oder 11 Äpfel. Das wäre falsch. Genauso ist das mit dem Rechnen mit Größen. Diese müssen zunächst auf eine gemeinsame Einheit gebracht werden, um zusammengerechnet zu werden.

    Rechnen mit Größen Früchte StudySmarter

    Wiederholung – Erklärung von Größen

    Damit Du Dein Wissen kurz auffrischen kannst, folgt hier eine kurze Zusammenfassung.

    Möchtest Du Dich noch tiefer ins Thema einlesen, schaue Dir einfach die einzelnen Erklärungen zu den jeweiligen Themen an.

    Größen – Definition und Tabelle

    Das Wort "Größe" wird im Alltag oft verwendet. Doch was bedeutet es in der Mathematik?

    Größen sind beschreibende Fachbegriffe, die aus einer Zahl (auch Maßzahl genannt) und einer Einheit (Maßeinheit) bestehen.

    Zur Übersicht findest Du hier nochmal eine Tabelle mit den gängigsten Größen, Einheiten und deren Schreibweise.

    GrößeEinheitSchreibweise
    ZeitSekunde, Minute, Stunde, Tag, Monat, Jahrs, min, h, d, Woche, m, a
    Masse/GewichtMilligramm, Gramm, Kilogramm, Tonnemg, g, kg, t
    LängeMillimeter, Zentimeter, Dezimeter, Meter, Kilometermm, cm, dm, m, km
    VolumenKubikzentimeter, Kubikdezimeter, Kubikmeter, Milliliter, Litercm3, dm3, m3, ml, l
    FlächeQuadratzentimeter, Quadratmeter, Quadratdezimeter, Quadratkilometercm2, m2, dm2, km2

    Im nächsten Abschnitt findest Du eine kurze Wiederholung zum Umrechnen von Größen.

    Umrechnen von Größen

    Um mit Größen Rechenoperationen durchführen zu können, ist es gegebenenfalls notwendig, diese vorher auf dieselbe Einheit zu vergrößern oder zu verkleinern. Denn Du darfst nur gleiche Größen und Maßeinheiten miteinander addieren und/oder subtrahieren.

    Du darfst immer nur mit gleichen Größen und Maßeinheiten rechnen.

    Das kannst Du mithilfe einer Stellenwerttafel machen oder Du wendest die Multiplikation oder Division zum Vergrößern oder Verkleinern der Maßeinheiten an. An der nachfolgenden Tabelle kannst Du erkennen, wie eine Stellenwerttafel zur Maßeinheit Volumen erstellt wird.

    Stellenwerttafel Volumen

    Am folgenden Beispiel kannst Du den Aufbau einer Stellenwerttafel erkennen.

    Es gibt eine Besonderheit bei den Volumeneinheiten dm3 = l und cm3 = ml.

    m3dm3 = lcm3 = mlmm3
    HZEHZEHZEHZE

    H = Hunderter

    Z = Zehner

    E = Einer

    Eine Stellenwerttafel hilft Dir beim Umrechnen von Größen, ohne zu rechnen.

    Dabei gibt es entweder den Fall, dass eine größere Maßeinheit in eine kleinere umgewandelt werden soll, so wie hier:

    Du möchtest 6 m3 in mm3 umwandeln.

    Dazu trägst Du als Erstes die 6 bei den Einern von m3 ein.

    m3dm3 = lcm3 = mlmm3
    HZEHZEHZEHZE
    6

    Dann schreibst Du in jede Stelle bis zu den Einern von mm3 eine 0, da Du von einer größeren Einheit in eine Kleinere umwandelst.

    m3dm3 = lcm3 = mlmm3
    HZEHZEHZEHZE
    6000000000

    Jetzt kannst Du anhand der Tabelle sehen: 6 m3 = 6 000 000 000 mm3.

    Oder Du möchtest umgekehrt eine kleinere Maßeinheit in eine größere umwandeln. Das funktioniert dann so:

    Du möchtest 45 000 mm3 in cm3 umwandeln.

    Dazu trägst Du als Erstes die 45 000 ein und beginnst mit der letzten Ziffer bei den Einern von mm3.

    m3dm3 = lcm3 = mlmm3
    HZEHZEHZEHZE
    45000

    Dann streichst Du jede Stelle bis zu den Einern von cm3weg.

    m3dm3 = lcm3 = mlmm3
    HZEHZEHZEHZE
    45

    Die Tabelle zeigt somit: 45 000 mm3 = 45 cm3.

    Beim Umwandeln von kleineren Maßeinheiten mithilfe einer Stellenwerttafel dürfen nur Nullen gestrichen werden, keine anderen Ziffern.

    Zum Umwandeln von Einheiten sind Stellenwerttafeln also eine Möglichkeit.

    Regeln beim Rechnen mit natürlichen Zahlen und Größen

    In den folgenden Abschnitten geht es um die Regeln, die Du beim Rechnen mit Größen und Einheiten beachten musst.

    Natürliche Zahlen sind die Menge positiver Ganzzahlen, wie 1, 2, 10, 35, 250, …

    Addieren und Subtrahieren von Größen

    Die Rechenoperationen Addition und Subtraktion funktionieren fast wie beim Rechnen mit normalen Zahlen.

    Größen werden miteinander addiert oder subtrahiert, indem zunächst eine Maßeinheit festgelegt wird und die zu addierenden/subtrahierenden Größen – falls nötig – auf die gleiche Einheit umgewandelt werden. Daraufhin werden die Maßzahlen addiert/subtrahiert und die Maßeinheiten verändern sich nicht mehr.

    Schau Dir das doch mal an einem Beispiel an:

    Du hast einen Grundriss Deiner Wohnung vorliegen und möchtest wissen, wie groß die Wohnfläche ist.

    RaumGröße
    Bad12 m2
    Küche8 m2
    Flur5 m2
    Wohnzimmer20 m2
    Schlafzimmer10 m2

    Du rechnest hier wie bei der Addition alle Summanden zusammen:

    12 m2 + 8 m2 + 5 m2 + 20 m2 + 10 m2 = 55 m2

    Nachdem Du alle Flächen der Zimmer miteinander addiert hast, weißt Du also, dass die gesamte Wohnfläche beträgt.

    Erinnerung!

    Summand + Summand = Summe

    Bei der Subtraktion von Größen gelten die gleichen Regeln wie bei der normalen Subtraktion und auch hier verändern sich die Größen nicht mehr, wenn Du Dich auf eine Maßeinheit festgelegt hast.

    Es sind 1,5 km vom Supermarkt bis zu Deiner Oma. Wenn Du die Abkürzung zwischen den beiden Häuserblocks am Park nimmst, hast Du 300 m gespart.

    Wie viel Meter liegen dann noch vor Dir?

    Da das gesuchte Ergebnis in Metern angegeben werden soll, ist es sinnvoll, die Einheiten auf Meter umzuwandeln.

    1,5 km = 1 500 m

    Dann nimmst Du den Minuend 1 500 m und ziehst den Subtrahend 300 m davon ab.

    1 500 m-300 m=1 200 m

    Es liegen also noch 1 200 Meter vor Dir.

    Erinnerung!

    Bei Subtraktionen gilt: Minuend – Subtrahend = Differenz

    Als Nächstes geht es um das Multiplizieren von Größen. Dabei gibt es einige Besonderheiten zu beachten.

    Multiplizieren von Größen

    Es gibt zwei Möglichkeiten der Multiplikation. Du kannst eine Größe mit einer Zahl multiplizieren, so wie es im nächsten Abschnitt gezeigt wird, oder aber Du multiplizierst eine Größe mit einer Größe.

    Multiplikation einer Größe mit einer Zahl

    Bei der Multiplikation von Größen mit Zahlen ändern sich Maßeinheiten nicht.

    Beim Multiplizieren von Zahlen und Größen werden nur die Zahlen mit den Maßzahlen multipliziert, ohne Änderung der Maßeinheit.

    Erinnerung!

    Faktor mal Faktor = Produkt

    Der Hausmeister an Deiner Schule bittet Dich auszurechnen, wie groß Schulhof A und C der vier Schulhöfe sind.

    Schulhof A: 300 m2 Schulhof B: 400 m2 Schulhof C: 300 m2Schulhof D: 250 m2

    Du schreibst also auf:

    Schulhof A: 300 m2; Schulhof B: 300 m22 * 300 m2 = 600 m2

    Du kannst dem Hausmeister sagen, dass die beiden relevanten Schulhöfe insgesamt 600 m2 groß sind.

    Beim Multiplizieren von Zahlen mit Größen rechnest Du wie bei der normalen Multiplikation und schreibst beim Ergebnis die Maßeinheit dazu.

    Multiplikation einer Größe mit einer Größe

    Besonders aufpassen musst Du beim Multiplizieren von Größen mit Größen. Es entsteht dabei eine neue Größe.

    Beim Multiplizieren von Größen mit Größen werden jeweils die Maßzahlen und die Maßeinheiten miteinander multipliziert.

    Potenzgesetze

    Es gibt Potenzgesetze, die beim Multiplizieren und Dividieren von Zahlen und Größen eine wichtige Rolle spielen. Das sogenannte Potenzieren ist dabei eine Vereinfachung für eine wiederholte mathematische Rechenoperation. Deren Ergebnis ist die Potenz. Dies lässt sich auch bei Größen anwenden, z. B. m · m = m2.

    Du kannst Dir am folgenden Beispiel ansehen, wie zwei Größen miteinander multipliziert werden.

    Deine Mutter fragt sich, wie viel m2 ihre neue Terrasse groß sein wird, wenn die eine Seite 5 m und die andere Seite10 mlang ist. Wie groß ist die neue Terrasse?

    Seite A: 5 m; Seite B: 10 m

    Zur Erinnerung!

    Der Flächeninhalt eines Rechtecks berechnet sich durch das Produkt beider Seiten a und b: A = a · b

    Du rechnest also:

    a·b=A5·10=50

    Und

    m·m=m2

    Als letzten Schritt führst Du die errechnete Maßzahl und die errechnete Größe zusammen und erhältst: 50 m2.

    Genau wie bei der Multiplikation gibt es auch bei der Division Besonderheiten zu beachten.

    Dividieren von Größen

    Beim Dividieren müssen ebenfalls erst einmal alle gegebenen Größen und Einheiten entsprechend auf eine Maßeinheit angeglichen werden.

    Bei der Division zweier gleicher Größen kommt immer eine Zahl heraus.

    Bei der Division zweier gleicher Größen werden die Maßzahlen und die Maßeinheiten jeweils durcheinander geteilt. Beide Quotienten werden danach zusammengesetzt.

    Erinnerung!

    Dividend ÷ Divisor = Quotient

    Die Rechenregel wird im Beispiel deutlich.

    Vor Dir liegt ein Brett von 2m Länge. Du möchtest es in 50 cm lange Stücke schneiden.

    In wie viele Stücke kannst Du das Brett teilen?

    Als Erstes überlegst Du Dir, welche Einheit für die Berechnung sinnvoll ist. Da das Rechnen mit geraden Zahlen am einfachsten ist, wandelst Du die Länge des Brettes in Zentimeter (cm) um.

    2 m = 200 cm

    Das 200 cm lange Brett ist der Dividend. Den teilst Du durch den Divisor, hier im Beispiel sind das 50 cm für jedes Stück.

    200 cm ÷ 50 cm = 4

    Die Maßeinheit hebt sich beim Teilen auf, sie wird weggekürzt. Das Ergebnis stellt die Anzahl der Stücke dar, die Du aus dem Brett erhalten hast.

    Du kannst das Brett also in 4 Stücke zu je 50 cm teilen.

    Da Dir beim Rechnen nicht immer nur gerade Zahlen begegnen werden, beschäftigt sich das nächste Kapitel mit dem sinnvollen Runden von Einheiten. Denn Runden ist nicht in jeder Situation von Vorteil.

    Sinnvolles Runden von Einheiten

    Im Alltag kommen auch Maßzahlen in Form von Dezimalzahlen vor. Es ist dabei jedoch nicht immer erforderlich, alle Nachkommastellen exakt aufzuführen. Du solltest dir aber schon Gedanken machen, in welchem Fall es nötig ist. Zunächst kannst Du Dir ein Beispiel ansehen, in welchem Runden sinnvoll ist.

    Du verabredest Dich mit einem Freund zum Joggen und er fragt Dich, wie lang die ausgesuchte Route ist.

    Ganz genau genommen wäre sie 5,455 km lang.

    Vereinfacht kannst Du da natürlich sagen, dass die Route rund 5,5 km lang ist.

    Es wird aufgerundet, wenn: die erste Zahl hinter der wegfallenden Dezimalstelle eine 5 oder höher ist.

    Es wird abgerundet, wenn: die erste Zahl hinter der wegfallenden Dezimalstelle ein 0, 1, 2, 3 oder 4 ist.

    Manchmal wäre es aber nicht sinnvoll, die exakten Zahlen einfach zu runden, wie Du beim nächsten Beispiel sehen kannst.

    Du suchst im Möbelhaus nach einem neuen Schreibtisch.

    Der Schreibtisch, der Dir auf den ersten Blick am besten gefällt, ist 1,50 m lang.

    Deine vorher gemessene Wand ist exakt 1,45 m lang.

    Wenn Du jetzt runden würdest, hättest Du ein Problem. Die Wand wird ja nicht länger und da ist ein exaktes Maß wichtig, weil der Schreibtisch sonst nicht an seinen Platz passen würde.

    Runden ist im Alltag dann sinnvoll, wenn es darum geht, Zahlen leichter verständlich zu machen oder leichter Vergleiche ausführen zu können. Maßangaben oder Jahreszahlen gehören jedoch nicht dazu.

    Noch mehr Inhalte zum Thema Runden findest Du im dazugehörigen Artikel.

    Rechnen mit Größen – Übungen

    Du findest hier nun einige Übungen, an denen Du das Rechnen mit Größen und Einheiten üben kannst. Die Aufgaben bzw. Übungen sind thematisch sortiert. Zu jeder Aufgabe gibt es eine Lösung.

    Rechnen mit Zeiteinheiten

    Hier findest Du gemischte Sachaufgaben zum Thema Zeit.

    Du rechnest Stunden (h) in Minuten (min) um, indem Du mit 60 multiplizierst. Umgekehrt rechnest Du Minuten (min) in Stunden (h) um, indem Du durch 60 dividierst.

    Aufgabe 1

    a)

    Max bereitet sich auf eine Klausur in Mathe vor und lernt von 13:30 - 18:30 Uhr. Wie lange hat Max für die Mathe-Klausur gelernt?

    b)

    Lisa und Jasmin schauen sich im Kino einen Film an. Dieser dauert 2 h 12 min. Um 22:42 Uhr ist die Vorstellung zu Ende. Wann hat der Film angefangen?

    Lösung

    a)

    Zunächst wird der Zeitraum in Minuten umgerechnet und im Anschluss werden diese miteinander addiert und zur Vereinfachung in die größere Einheit umgewandelt.

    13:30-14:00 30 min14:00-18:00 4 h = 240 min18:00-18:30 30 min 30 min + 240 min + 30 min = 300 min300 min 300 min ÷60 min= 5

    Max hat also insgesamt 5 h für die Klausur gelernt.

    b)

    Hier wird die Filmdauer zunächst auf eine gemeinsame Einheit gebracht und die Gesamtlänge ausgerechnet. Dann wird die Differenz der Uhrzeit vom Filmende bis zur nächsten geraden Uhrzeit berechnet.

    Diese wird von der Gesamtlänge subtrahiert, sodass die Restdauer übrig bleibt. Diese wiederum wird von der Uhrzeit abgezogen und führt zur Uhrzeit des Filmbeginns.

    2 h = 120 min120 min + 12 min = 132 min

    22:42 - 22:00 42 min

    132 min- 42 min= 90 min

    60 min 22:00 - 21:0030 min 21:00 - 20:30

    Der Film hat um 20:30 Uhr begonnen.

    In der nächsten Aufgabe geht es um das Rechnen mit den Zeiteinheiten Sekunde (s), Minute (min) und Stunde (h).

    Aufgabe 2

    Rechne die gegebenen Zeiteinheiten in die jeweils anderen um. Achte darauf, welche Einheit gegeben und gesucht ist.

    a) 20 min ÷ 4 b) 2 · 30 min c) 2 h ÷ 30 min d) 3,5 min · 10 e) 240 s ÷ 6

    Lösung

    a) 5 min b) 60 min = 1 h c) 4 d) 35 min e) 4 sec

    Damit Du das Multiplizieren und Dividieren von Zeiteinheiten üben kannst, findest Du hier Übungen dazu.

    Aufgabe 3

    a)

    Stefan geht dreimal die Woche zum Fußball-Training. Eine Trainingseinheit dauert 120 min.

    Wie viele Stunden trainiert Stefan in einem Jahr?

    b)

    Weil Moritz länger krank war, hat er auf der Arbeit 360 Fehlstunden. Ein normaler Arbeitstag dauert 8 Stunden. Wie viele Tage hat Moritz gefehlt?

    Lösung

    a)

    Als Erstes wird ein Jahr in Wochen umgewandelt. Diese, multipliziert mit der Anzahl von wöchentlichen Trainingseinheiten, ergibt die Gesamtzahl an Trainingseinheiten im Jahr.

    Die Trainingseinheiten werden in Minuten umgewandelt und diese dann zur Vereinfachung in die größere Einheit Stunden.

    1 Jahr = 53 Wochen53 · 3 = 159120 min = 2 h159 · 2 h = 318 h

    Stefan trainiert in einem Jahr 318 Stunden.

    b)

    Die Fehlstunden werden durch die Stunden eines normalen Arbeitstages geteilt, sodass als Lösung die Zahl der gefehlten Arbeitstage herauskommt.

    360 h ÷ 8 h= 45

    Moritz hat 45 Tage gefehlt.

    Rechnen mit Längeneinheiten

    In Aufgabe 4 sind für Dich einige Übungen zum Rechnen mit Längeneinheiten zusammengestellt.

    Denke an die Einheitentabelle am Anfang dieses Beitrags, falls Du Dir bei einer Einheit nicht sicher sein solltest oder lies noch einmal in der entsprechenden Erklärung nach.

    Aufgabe 4

    Wenn unterschiedliche Einheiten angegeben sind, gib bei der Lösung für jede Einheit das Ergebnis an.

    a) 20 m + 18 m b) 13 cm + 55 cm c) 2 dm + 70 cm d) 200 mm + 17 cm e) 3 km + 300 m

    Lösung

    a) 38 m b) 68 cm c) 9 dm/90 cm d) 370 mm/37 cm e) 3,3 km/3300 m

    Rechnen mit Masse und Gewicht

    Bei der nächsten Aufgabe geht es um das Rechnen mit Masse und Gewicht.

    Zur Erinnerung!

    Umgerechnet wird eine Gewichtseinheit in die nächstgrößere Einheit, indem Du mit 1000 multiplizierst. Umgekehrt rechnest Du in die nächst kleinere, indem Du durch 1000 dividierst.

    Aufgabe 5

    a) 700 mg + 30 g b) 7 t - 3.000 kg c) 6 · 13 kg d) 88 kg ÷ 2 e) 840 mg ÷ 4 mg

    Lösung

    a) 30.700 mg/30,7 g b) 4 t/4.000 kg c) 78 kg d) 44 kg e) 210

    d) 29 l/29.000 ml g) 115,64922 m3/115.649.220 cm3 i) 14 l j) 560 m3 k) 10

    Rechnen mit Volumeneinheiten

    Nachfolgend kannst Du das Rechnen mit Volumeneinheiten üben.

    Aufgabe 6

    a) 25 l + 4.000 ml b) 85 m3 + 30,65 m3 - 780,30 cm3 c) 7.000 l ÷ 500 d) 7 · 80 m3 e) 50 cm3 ÷ 5 cm3

    Lösung

    a) 29 l/29.000 ml b) 115,64922 m3/115.649.220 cm3 c) 14 l d) 560 m3 e) 10

    Rechnen mit Flächeneinheiten

    Als Nächstes geht es um das Rechnen mit den Flächeneinheiten cm2, dm2, m2, km2.

    Aufgabe 7

    a) Frau Schmitz möchte einen Schrebergarten pachten, der möglichst viel Platz bietet. Zur Auswahl stehen folgende Schrebergärten:

    Schrebergarten A (40 m lang und 20 m breit); Schrebergarten B (30 m lang und 30 m breit)

    Für welchen Garten soll sie sich entscheiden?

    b) 17 · 30 m2 c) 50 m2 + 2,45 dm2 d) 50 km2 ÷ 5 km2

    Lösung

    a)

    Schrebergarten A

    40 m · 20 m = 800 m2

    Schrebergarten B

    30 m · 30 m = 900 m2

    Frau Schmitz sollte sich für Schrebergarten B entscheiden, da dieser mehr Platz bietet.

    b) 510 m2 c) 5.002,45 dm2 / 2,475 m2 d) 10

    Rechnen mit Größen – Das Wichtigste

    • Größen sind beschreibende Fachbegriffe, die aus einer Zahl (auch Maßzahl genannt) und einer Einheit (Maßeinheit) bestehen.
    • Größen müssen auf die gleiche Einheit gebracht werden, um mit ihnen rechnen zu können
    • Nach dem Umwandeln der Maßzahlen auf eine gleiche Einheit werden diese addiert/subtrahiert und die Maßeinheiten verändern sich nicht mehr.
    • Bei der Multiplikation von Größen mit Größen entstehen neue Größen.
    • Beim Multiplizieren von Zahlen mit Größen werden nur die Zahlen mit den Maßzahlen multipliziert, ohne Änderung der Maßeinheit.
    • Bei der Division zweier gleicher Größen werden die Maßzahlen und -einheiten jeweils durcheinander geteilt. Beide Quotienten werden danach zusammengesetzt.
    • Sinnvolles Runden dient der Vereinfachung und der besseren Verständlichkeit von Zahlen:
      • abrunden bis oder kleiner 4
      • aufrunden ab und größer 5.
    • Es gibt eine Besonderheit bei den Volumeneinheiten dm3 = l und cm3 = ml.
    Häufig gestellte Fragen zum Thema Rechnen mit Größen

    Was ist eine mathematische Größe?

    Eine mathematische Größe ist ein beschreibender Fachbegriff, der aus einer Zahl (Maßzahl) und einer Einheit (Maßeinheit) besteht.

    Was heißt "Rechnen mit unterschiedlichen Größen"?

    Es gibt innerhalb einer Größe unterschiedliche Einheiten, z.B. Größe Länge mit der Einheit Meter. Mit diesen kannst du rechnen.

    Wie wird mit Größen gerechnet?

    Du bringst zunächst alle gegebenen Größen auf eine gemeinsame Einheit und kannst dann ganz normal mit ihnen rechnen.

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 15 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren