Springe zu einem wichtigen Kapitel
In diesem Fall hast Du gerundet. Was das Runden ist und wie genau das geht, erfährst Du in dieser Erklärung.
Aufrunden und Abrunden ganzer Zahlen
Beim Runden einer ganzen Zahl wird sich eine Stelle der Zahl, zum Beispiel der Zehner, herausgesucht, die gerundet werden soll und dann wird sich die Ziffer danach angeschaut. Die Ziffer sagt einem, ob ab- oder aufgerundet werden soll.
Aber wann wird eigentlich auf- und abgerundet?
Beim Runden einer ganzen Zahl gibt es nur zwei Regeln, die Du Dir merken solltest.
Die sich anzuschauende Ziffer, nach der zu rundenden Ziffer, sagt einem, ob ab- oder aufgerundet werden soll.
Unter dieser Bedingung wird abgerundet: \( \leq 4\)
Unter dieser Bedingung wird aufgerundet: \( \geq 5 \)
Ganze Zahlen kannst Du ,abhängig von ihrer Größe, unter anderem auf Zehner, Hunderter und Tausender runden.
Das mathematische Symbol fürs Runden sieht so aus: \( \approx \)
Runden auf Zehner
Um eine ganze Zahl auf einen Zehner zu runden, schaust Du Dir den Einer der Zahl an, auf den Du die bisher gelernte Regeln anwendest.
Der Zehner einer ganzen Zahl ist immer die zweite Ziffer von hinten.
Wenn der Einer zwischen 0 und 4 liegt, dann rundest Du den Zehner ab und wenn sie zwischen 5 und 9 liegt, dann rundest Du ihn auf.
Als Beispiel werden die Zahlen \(72\) wird und \(76\) genommen.
\[ 7 {\color{#1478c8}2} \approx 70\]
\[ 7 {\color{#00dcb4}6} \approx 80\]
Hier erkennst Du, dass alles \( \geq 5 \) aufgerundet wird und alles \( \leq 4 \) abgerundet wird.
Jetzt, wo Du gesehen hast, wie es geht, bist Du dran.
Runden – Aufgabe 1
Runde die Zahl \(113\) auf ihren Zehner.
Lösung
Du schaust Dir den Einer an und schaust, ob der Einer \( \leq 4 \) oder \( \geq 5 \) ist. Die \( 3 \leq 4\), also wird abgerundet.
\[ 11 {\color{#1478c8}3} \approx 110\]
Die gerundete Zahl ist \(110\).
Runden auf Hunderter
Um eine ganze Zahl auf ein Hunderter zu runden, schaust Du Dir dieses Mal den Zehner an.
Der Hunderter einer ganzen Zahl ist immer die dritte Ziffer von hinten.
Auch hier gelten die Regeln:
- bei \( \leq 4 \) wird abgerundet
- ab \( \geq 5 \) wird aufgerundet
Als Beispiel wird die Zahl \(249\) und \(378\) genommen.
\[ 2{ \color{#1478c8}4}9 \approx 200 \]
\[ 3{ \color{#00dcb4}7}8 \approx 400 \]
Jetzt bist Du dran!
Runden – Aufgabe 2
Runde die Zahl \(1345\) auf ihren Hunderter.
Lösung
Du schaust Dir den Zehner an und guckst, ob dieser \( \leq 4 \) oder \( \geq 5 \) ist. Die \( 4 \leq 4\), also wird abgerundet.
\[ 1\,3{ \color{#1478c8}4}5 \approx 1300 \]
Die gerundete Zahl ist \(1\,300\).
Runden auf Tausender
Um eine ganze Zahl auf ein Tausender zu runden, schaust Du Dir dieses Mal den Hunderter an.
Der Tausender ist bei einer ganzen Zahl immer die vierte Ziffer von hinten.
Hier gelten wieder die Regeln bei \( \leq 4 \) wird abgerundet und ab \( \geq 5 \) wird aufgerundet.
Als Beispiel sind die Zahlen \(1\,234\) und \(230\,589\) gegeben, welche auf Tausender gerundet werden müssen.
\[ 1\,{ \color{#1478c8}2}34 \approx 1000 \]
\[ 230\,{ \color{#00dcb4}5}89 \approx 231000 \]
Nun bist Du an der Reihe!
Runden – Aufgabe 3
Runde die Zahl \(456\,987\) auf ihren Tausender.
Lösung
Du schaust Dir den Hunderter an und schaust, ob dieser \( \leq 4 \) oder \( \geq 5 \) ist. Die \( 9 \leq 5\), also wird aufgerundet.
\[ 456\,{ \color{#00dcb4}9}87 \approx 457000 \]
Die gerundete Zahl ist \(457\,000\).
Auch Dezimalzahlen können gerundet werden.
Dezimalzahlen runden
Wenn Du Dezimalzahlen runden möchtest, dann musst Du dieselben Regeln befolgen, wie beim Runden ganzer Zahlen
Eine Dezimalzahl ist eine Kommazahl und besteht aus Vorkommastellen, Komma und Nachkommastellen.
\[ {\color{#1478c8} 0} {\color{#00dcb4} {,} } {\color{#fa3273} 4} \]
Auch eine Dezimalzahl, kann auf Zehntel, Hundertstel und Tausendstel gerundet werden.
Runden auf Zehntel
Um eine ganze Dezimalzahl auf ein Zehntel zu runden, schaust Du Dir nur die zweite Ziffer nach dem Komma der Zahl an, das Hundertstel.
Ein Zehntel ist immer die erste Ziffer nach dem Komma.
Auch hier gelten die Regeln: Wenn der Hundertstel \( \leq 4 \) ist, wird abgerundet und ab \( \geq 5 \) wird aufgerundet.
Als Beispiel gibt es die Zahl \(1{,}25\) und \(12{,}41\) , die auf das Zehntel gerundet werden müssen.
\[ 12{,}4{ \color{#1478c8}1} \approx 12{,}4 \]
\[ 1{,}2{ \color{#00dcb4}5} \approx 1{,}3 \]
Nun kannst Du eine Aufgabe lösen.
Runden – Aufgabe 4
Runde die Zahl \(134{,}73\) auf ihr Zehntel.
Lösung
Um auf das Zehntel zu runden, musst Du schauen, ob der Hundertstel \( \leq 4\) ist oder \( \geq 5\). An der Stelle erkennst Du, dass das Hundertstel \( 3 \leq 4\) ist, also wird abgerundet.
\[ 134{,}7{\color{#1478c8}3} \approx 134{,}7\]
Die gerundete Zahl ist \(134{,}7\).
Runden auf Hundertstel
Um eine ganze Dezimalzahl auf ein Hundertstel zu runden, schaust Du Dir nur die dritte Ziffer nach dem Komma der Zahl an, das Tausendstel.
Das Hundertstel ist immer die zweite Ziffer nach dem Komma.
Wenn der Tausendstel \( \leq 4 \) ist, wird abgerundet und ab \( \geq 5 \) wird aufgerundet.
Gegeben sind die Zahlen \(23,654\) und \(45,927\), die auf ihr Hundertstel gerundet werden sollen.
\[ 23{,}65{ \color{#1478c8}4} \approx 23{,}65 \]
\[ 45{,}92 {\color{#00dcb4}7} \approx 45{,}93 \]
Jetzt bist Du dran!
Runden – Aufgabe 5
Runde die Zahl \(123{,}567\) auf das Hundertstel.
Lösung
Dafür schaust Du Dir das Tausendstel an und schaust, ob die Ziffer \( \leq 4\) ist oder \( \geq 5\). An der Stelle erkennst Du, dass das Tausendstel \( 7 \geq 5\) ist, also wird aufgerundet.
\[ 123{},56{\color{#00dcb4}7} \approx 123{,}57\]
Die gerundete Zahl ist \(123{,}57\).
Runden auf Tausendstel
Wen Du auf das Tausendstel einer Zahl runden möchtest, dann musst Du Dir das Zehntausendstel anschauen und darauf die gelernte Regeln anwenden.
Ein Tausendstel ist immer die dritte Zahl nach dem Komma.
Wenn der Zehntausendstel \( \leq 4 \) ist, wird abgerundet und ab \( \geq 5 \) wird aufgerundet.
Gegeben sind die Zahlen \(1{,}54648\) und \(145{,}22378\), die auf ein Tausendstel gerundet werden sollen.
\[ 1{,}546{ \color{#1478c8}4}8 \approx 1{,}546 \]
\[ 145{,}223 {\color{#00dcb4}7}8 \approx 145{,}224 \]
Jetzt darfst Du rechnen!
Runden – Aufgabe 6
Runde die Zahl \(156{,}6739\) auf ihr Tausendstel.
Lösung
Dafür schaust Du Dir das Zehntausendstel an und schaust, ob die Ziffer \( \leq 4\) ist oder \( \geq 5\). An der Stelle erkennst Du, dass das Tausendstel \( 7 \geq 5\) ist, also wird aufgerundet.
\[ 156{,}673{\color{#00dcb4}9} \approx 156{,}674\]
Die gerundete Zahl ist \(156{,}674\).
Neben dem gängigen Runden gibt es noch das kaufmännische Runden.
Kaufmännisch runden
Das kaufmännische Runden hat dieselben Regeln, wie das ganz gängige Runden, nämlich bei \( \leq 4 \) wird abgerundet und ab \( \geq 5 \) wird aufgerundet.
Beim kaufmännischen Runden geht es um das Runden von etwa Geldbeträgen, oder ähnlichem, da Geldbeträge immer nur zwei Nachkommastellen haben. Es wird also auf die zweite Nachkommastelle gerundet, was dem Runden auf Hundertstel entspricht.
Wenn das Tausendstel, also die dritte Nachkommastelle \( \leq 4 \) ist, dann wird abgerundet und wenn sie \( \geq 5 \) wird sie aufgerundet.
Runden – Aufgabe 7
Du bist im Supermarkt und hast \( 2{,}50 \,\text{€} \)dabei. Du brauchst eine Packung Käse, einen Liter Milch und eine Flasche Fruchtsaft. Alle Sachen zusammen kosten \(2{,}50346\, \text{€}\). Kommst Du mit Deinem Geld aus?
Lösung
Um herauszufinden, ob Du mit den \(2{,}50 \, \text{€}\) auskommst, musst Du an dieser Stelle kaufmännisch runden. Dafür rundest Du auf ein Hundertstel, also die zweite Nachkommastelle und musst Dir dafür die dritte Nachkommastelle, also das Tausendstel, anschauen.
Wenn der Tausendstel \( \leq 4\) ist, dann rundest Du ab und wenn der Tausendstel \( \geq 5 \) ist, dann rundest Du auf.
Bei der Zahl \(2{,}50{ \color{#1478c8}3}46\) ist das Tausendstel \( {\color{#1478c8}3} \leq 4\), also wird abgerundet.
\[ 2{,}50 \, {\color{#1478c8}3}46 \text{€} \approx 2{,}50 \text{€} \]
Der gerundete Geldbetrag liegt bei \(2{,}50 \, \text{€} \) , was bedeutet, dass Du bezahlen kannst.
Runden – Aufgaben zum Üben
Nun kannst Du Dein erlerntes Wissen überprüfen, in dem Du die Aufgaben rechnest.
Runden – Aufgabe 8
Runde die Zahl \(134\,987\) auf Hunderter.
Lösung
Du schaust Dir den Zehner an und schaust, ob dieser \( \leq 4 \) oder \( \geq 5 \) ist. Die \( 8 \geq 4\), also wird aufgerundet.
\[ 134\,{ \color{#00dcb4}9}87 \approx 134000 \]
Die gerundete Zahl ist \(134\,000\).
Runden – Aufgabe 9
Runde die Zahl \(1{,}3429\) auf ihr Zehntel.
Lösung
Um auf das Zehntel zu runden, musst Du schauen, ob der Hundertstel \( \leq 4\) ist oder \( \geq 5\). An der Stelle erkennst Du, dass das Hundertstel \( 4 \leq 4\) ist, also wird abgerundet.
\[ 1{,}3{\color{#1478c8}4}29 \approx 1{,}3\]
Die gerundete Zahl ist \(1{,}3\).
Runden – Aufgabe 10
Du gehst mit Deinen Freunden in den Supermarkt und ihr kauft für eine Geburtstagsfeier ein. Nachdem ihr die Sachen bezahlt habt, muss jeder \(5,6078\,\text{€} \) bezahlen. Wie viel muss jeder nach dem Runden bezahlen?
Lösung
Um herauszufinden, wie viel jeder bezahlen muss, rundest Du auf ein Hundertstel, also die zweite Nachkommastelle und musst Dir dafür die dritte Nachkommastelle, also das Tausendstel, anschauen.
Wenn der Tausendstel \( \leq 4\) ist, dann rundest Du ab und wenn der Tausendstel \( \geq 5 \) ist, dann rundest Du auf.
Bei der Zahl \(5{,}60{ \color{#00dcb4}7}85\) ist das Tausendstel \( {\color{#00dcb4}7} \geq 5\), also wird abgerundet.
\[ 5{,}60 \, {\color{#00dcb4}7}8 \, \text{€} \approx 5{,}61 \text{€} \]
Der gerundete Geldbetrag liegt bei \(5{,}61 \, \text{€}\) , welchen jeder von Euch bezahlen muss.
Runden – Das Wichtigste
- Unter dieser Bedingung rundest Du ab: \( \leq 4\)
- Unter dieser Bedingung rundest Du auf: \( \geq 5\)
- Ganze Zahlen kannst Du auf Zehner, Hunderter und Tausender runden.
- Dezimalzahlen kannst Du auf Zehntel, Hundertstel und Tausendstel runden.
- Beim kaufmännischen Runden geht es um das Runden von etwa Geldbeträgen, oder ähnlichem, da Geldbeträge immer nur zwei Nachkommastellen haben.
Lerne schneller mit den 4 Karteikarten zu Runden
Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.
Häufig gestellte Fragen zum Thema Runden
Wie geht das Runden?
Das ist abhängig davon, an welcher Stelle du runden möchtest. Wenn du diese Stelle gefunden hast, dann gilt die Rundungsregel, dass alles kleiner, gleich 4 abgerundet wird und alles größer, gleich 5 aufgerundet wird.
Wie rundest Du auf Zehner?
Um eine ganze Zahl auf die Zehner-Stelle zu runden, schaust du dir nur die letzte Ziffer der Zahl an, den einer. Wenn diese Ziffer zwischen 0 und 4 liegt, dann rundest du ab. Falls nicht, dann rundest du auf.
Wann wird auf- und abgerundet?
Wenn die zu betrachtende Ziffer kleiner oder gleich 4 ist, dann wird abgerundet, wenn die Ziffer größer, oder gleich 5 ist, dann wird aufgerundet.
Was ist die Rundungsstelle?
Die Rundungsstelle sind die Zehner, Hunderter, Tausender, Zehntel, Hundertstel, Tausendstel und so weiter. Also die Stelle, die auf- oder abgerundet werden soll.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr