Heute macht Bauer Frank noch eine Zählung. Er stellt dabei den folgenden Term für die Anzahl an Tieren auf:
Wenn Du Dich jetzt fragst, wie viele Kühe und wie viele Schafe insgesamt bei dieser Zählung rausgekommen sind, dann bist Du hier genau richtig! Dafür benötigst Du nämlich die Addition und Subtraktion in Termen. Wie das aussieht und funktioniert, erfährst Du in dieser Erklärung!
Terme addieren und subtrahieren – Erklärung
Um das Subtrahieren und Addieren in Termen zu verstehen, ist es sinnvoll, sich zunächst eine Wiederholung über die Definition und Eigenschaften von Termen anzuschauen. Also: Was sind Terme überhaupt, was gilt, als Term und was nicht und wie werden sie definiert?
Wiederholung - Terme
Wie Du oben in der Einleitung schon gesehen hast, können Terme
- Zahlen,
- Rechenoperationen (+ ; - )
- und Variablen ("k" für Kühe und "s" für Schafe)
enthalten. Die allgemeine Definition für einen Term findest Du hier:
Terme sind sinnvolle Verknüpfungen von Rechenoperationen, Zahlen und Variablen. Dabei können reale Zustände in Form von Termen ausgedrückt werden. Er enthält keine Gleich - oder Ungleichheitsszeichen. Auch einzelne Zahlen oder Variablen können Terme sein.
Hier kannst Du Dir zur Veranschaulichung ein paar Beispiele zu Termen anschauen. Genauer gesagt, was Terme sind und was nicht.
Terme | keine Terme |
| |
| |
| |
Warum?
Die Ausdrücke auf der linken Seite sind sinnvolle Verknüpfungen von Zahlen und Variablen durch Rechenoperationen und gelten somit als Terme.
Auf der rechten Tabellenhälfte hingegen gelten die Ausdrücke nicht als Terme. Der erste Ausdruck enthält ein Gleichheitszeichen und ist somit eine Gleichung. Der zweite Ausdruck ist unvollständig und somit nicht sinnvoll. Der dritte Ausdruck enthält ein Ungleichheitsszeichen und ist somit eine Ungleichung. Ungleichungen gelten nicht als Terme.
Mit Termen kannst Du rechnen. Doch wie funktioniert das?
Terme addieren und subtrahieren - Regeln
Um in Termen zu addieren und subtrahieren, solltest Du die Regeln der Addition und Subtraktion beherrschen. Wenn Du Dein Wissen darin auffrischen möchtest, dann schau doch gerne in die jeweiligen Artikel zu den Themen rein!
Terme kannst Du also addieren und subtrahieren. Dabei gilt jedoch eine wichtige Regel:
In Termen können nur gleiche Variablen, sowie Zahlen miteinander addiert oder subtrahiert werden!
Wie bei der Addition und Subtraktion in Termen vorgegangen wird, kannst Du Dir in den folgenden Definitionen anschauen.
Terme addieren
Beim Addieren von Termen können nur gleiche Variablen miteinander addiert werden.
Betrachte dafür folgendes Beispiel:
In einem Blumenstrauß wird die Anzahl an Rosen mit r bezeichnet und die Anzahl an Tulpen mit t. Die Gesamtzahl beider Blumen wird mit diesem Term beschrieben:
Den Term kannst Du dann nach gleichen Variablen sortieren, also die gleichen Variablen nebeneinander schreiben:
Weil Rosen die gleiche Art von Blumen sind, bzw. die gleiche Variable haben und Tulpen ebenfalls, kannst Du den Term zusammenfassen, indem Du die gleichen Arten von Blumen miteinander addierst:
Es sind also 6 Rosen und 5 Tulpen in dem Blumenstrauß.
Wie sieht das bei der Subtraktion von Termen aus?
Terme subtrahieren
Auch hier gilt: Nur Ausdrücke mit gleichen Variablen dürfen voneinander subtrahiert werden.
In dem Blumenstrauß ist dazu noch Bindegrün eingebunden. Es wurden Eukalyptussträucher und Bärengras eingefügt. Die Anzahl an Eukalyptus wird mit e beschrieben und die Anzahl an Bärengras mit b. Die Anzahl an Bindegrün im Blumenstrauß kann mit diesem Term beschrieben werden.
Weil dadurch die schönen Blumen überdeckt werden, soll etwas von den grünen Bindesträuchern entfernt werden. Ein paar der Sträucher werden entfernt. Damit sieht die Anzahl an Bindegrün danach so aus:
Diesen Term kannst Du dann nach gleichen Variablen sortieren:
Und die gleichen Variablen miteinander verrechnen:
Übrig bleiben dann also acht Eukalyptussträucher und sechs Bärengräser.
Wie die Addition und Subtraktion in der Anwendung aussieht, kannst Du Dir in den folgenden Beispielen anschauen!
Terme addieren und subtrahieren – Beispiele und Besonderheiten
Du hast jetzt alles über das Addieren und Subtrahieren in Termen gelernt. Nun kannst Du mithilfe des Gelernten auch herausfinden, wie viele Kühe und Schafe auf Bauer Franks Weiden grasen!
Die Kühe bezeichnet er mit einem k und die Schafe mit einem s. Bei der letzten Zählung sah die Anzahl der Tiere folgendermaßen aus:
Abbildung 1: Anzahl an Kühen und Schafen vor 4 Monaten
Bauer Frank stellt für die Anzahl an Tieren bei der Zählung vor vier Monaten folgenden Term auf:
Bei der heutigen Zählung stellt der Bauer jedoch einen anderen Term auf. Der Term sieht so aus:
Jetzt ist nicht direkt auf den ersten Blick zu erkennen, wie viele Tiere sich auf den Weiden befinden. Wie Du siehst, sind im Term gleiche Variablen (k und s) und die Rechenoperationen + und - enthalten. Um die Anzahl der Tiere zu berechnen, kannst Du den Term vereinfachen. Achte dabei auf die Regeln von oben!
Den Term kannst Du so sortieren, dass die gleichen Variablen und die Rechenoperationen miteinander verknüpft sind. Diese Bestandteile kannst Du dann miteinander verrechnen, um den Endterm aufzustellen:
Der Endterm sieht also so aus:
Bei dieser Zählung kommt Bauer Frank also auf 26 Kühe und 17 Schafe.
Mithilfe der Addition und Subtraktion in Termen kannst Du Terme vereinfachen. Achte dabei immer auf die Regeln und schau Dir die Terme genau an, um Flüchtigkeitsfehler zu vermeiden! Es gibt noch einige Besonderheiten in Termen, für die es sinnvoll ist, eine Definition und ein Beispiel aufzuführen.
Terme addieren und subtrahieren - mit Klammern
Wenn Du einen Term vorliegen hast, in dem eine oder mehrere Klammern sind, kannst Du diese Klammer(n) auflösen, um den Term zu vereinfachen.
Eine Rechenregel, die für das Lösen von Klammern wichtig ist, sind die Vorzeichenregeln "minus mal minus ergibt plus" und "plus mal minus ergibt minus". Wenn ein Rechenzeichen vor einer Klammer steht, bedeutet das, dass der Inhalt der Klammer mit dem Zeichen multipliziert wird:
Die allgemeine Regel zur Addition und Subtraktion in Termen gilt auch hier!
Gegeben ist der Term . Diesen Term kannst Du vereinfachen, indem du die Klammer auflöst. Dabei gehst Du so vor:
Bedenke, dass das Minus vor der Klammer die Vorzeichen der Werte in der Klammer verändert. Deswegen wird aus +3y dann -3y.
Du kannst den Term dann noch so umstellen, dass die gleichen Variablen nebeneinander stehen und sie dann miteinander verrechnen:
Der Endterm ist also .
Die nächste Besonderheit ist die Addition und Subtraktion von Termen, in denen es Hochzahlen gibt.
Terme addieren und subtrahieren - mit Hochzahlen
Wie Du weißt, können nur Ausdrücke mit gleichen Variablen miteinander addiert oder subtrahiert werden. Das gilt auch für Variablen mit Exponenten.
Eine Variable ohne bestimmten Exponenten hat immer die Hochzahl 1. Variablen können miteinander verrechnet werden, wenn sie die gleichen Exponenten haben. Das bedeutet:
In diesen Fällen können die Variablen jedoch nicht zusammengefasst werden:
Das gilt aber nur, wenn die Basis von Variablen gebildet wird, wie in den Beispielen. Ist die Basis eine Zahl, so kann sie natürlich exponiert werden.
Wie das genau aussieht, kannst Du Dir in folgendem Beispiel anschauen.
Gegeben ist der Term . Um diesen Term zu vereinfachen, kannst Du die gleichen Ausdrücke durch Addition und Subtraktion miteinander verrechnen. Dafür kannst Du erstmal die gleichen Ausdrücke markieren.
Die markierten Ausdrücke kannst Du dann miteinander verrechnen, um den Term zu vereinfachen.
Weiter geht's mit dem Addieren und Subtrahieren von Bruchtermen.
Bruchterme addieren und subtrahieren
Um Bruchterme zu addieren und subtrahieren, solltest Du die Regeln zum Erweitern und Kürzen von Brüchen kennen. Schau dazu gerne in die Artikel Brüche erweitern und Brüche kürzen.
Hast Du einen Bruchterm vorliegen, in dem alle Elemente den gleichen Nenner haben, können die Bruchterme so verrechnet werden:
Haben die Brüche keinen gemeinsamen Nenner, müssen sie auf den kleinsten gemeinsamen Nenner erweitert werden. Dafür wird das kgV (kleinste gemeinsame Vielfache) gesucht. Sind die Brüche auf den gleichen Nenner gebracht, können sie miteinander verrechnet werden.
Das Ganze kannst Du Dir ebenfalls an einem Beispiel anschauen!
Gegeben ist der Term . Wenn Du diesen Term jetzt vereinfachen willst, dann schaust Du als Erstes, was der kleinste gemeinsame Nenner der beiden Brüche ist. Das ist in diesem Fall . Der erste Bruch hat diesen Wert bereits als Nenner. Der zweite Bruch muss noch auf diesen Nenner erweitert werden. Dazu erweiterst Du den Bruch mit 5.
Möchtest Du Dir das Erweitern von Brüchen wiederholen? Dann schau in den Artikel Brüche erweitern rein!
Jetzt haben beide Brüche den gleichen Nenner. Also kannst Du die Brüche miteinander verrechnen.
Der Endterm ist dann .
Falls Du nach dem Vereinfachen von Termen überprüfen möchtest, ob Du richtig gerechnet hast, kannst Du eine Probe durchführen.
Terme addieren und subtrahieren - mit Probe
Du kannst einen vereinfachten Term, in dem Du vorher addiert oder subtrahiert hast, überprüfen. Das machst Du, indem Du jeweils in den Anfangs- und in den Endterm einen oder mehrere Werte für eine oder mehrere Variablen einsetzt.
Gegeben ist der Anfangsterm . Dazu ist folgender vereinfachter Endterm gegeben: . Um die Richtigkeit des Endterms zu überprüfen, kannst Du für die Variablen x und y beispielhaft Werte einsetzen und überprüfen ob bei beiden Termen das gleiche Ergebnis rauskommt. In diesem Fall wurden die Werte und genommen und eingesetzt, Du kannst aber auch andere Werte wählen. Wichtig ist nur, dass x nicht den gleichen Wert hat, wie y.
Bei beiden Termen kommt das gleiche Ergebnis raus. Das heißt, dass der Anfangsterm richtig vereinfacht wurde.
Eine solche Probe kannst Du immer machen, wenn Du Dir nicht sicher bist, ob der Endterm richtig ist. Beachte dabei aber, dass Du für verschiedene Variablen auch verschiedene Werte nimmst.
Terme addieren und subtrahieren – Übungen
Und? Bist Du jetzt fit im Thema Addition und Subtraktion in Termen? Das kannst Du in den folgenden Übungsaufgaben überprüfen! Solltest Du irgendwo nicht mehr weiterkommen, ist das kein Problem. Scroll einfach hoch und lies Dir die Erklärungen nochmal durch!
Aufgabe 1
Gegeben sind drei Terme. Vereinfache sie soweit wie möglich.
Lösung
Den ersten Term vereinfachst Du folgendermaßen:
Den zweiten Term kannst Du so vereinfachen:
Den dritten Term vereinfachst Du so:
Aufgabe 2
Elias war einkaufen. Dabei hat er 7 Äpfel, 4 Packungen Mehl und 15 Eier gekauft. Dann sieht Elias, dass er zuhause noch 4 Eier und 2 Äpfel hat. Er möchte einen Apfelkuchen backen und braucht dafür 5 Äpfel, 6 Eier und 2,5 Packungen Mehl.
Stelle einen Term auf, der die Anzahl an Zutaten beschreibt und vereinfache ihn soweit wie möglich.
Lösung
Du kannst die Zutaten mit den Buchstaben a für Apfel, m für Mehl und e für Eier bezeichnen. Zuerst kannst Du einen Term aufstellen, der beschreibt, was Elias alles eingekauft hat:
Danach findet er noch ein paar Zutaten zuhause:
Für den Kuchen braucht er ein paar Zutaten. Das sieht dann so aus:
Diesen Term kannst Du jetzt noch vereinfachen:
Elias hat nach dem Backen noch 4 Äpfel, 1,5 Packungen Mehl und 13 Eier übrig. Und dazu einen leckeren Apfelkuchen!
Terme addieren und subtrahieren – Das Wichtigste
- Ein Term ist eine sinnvolle Verknüpfung von Rechenoperationen, Zahlen und Variablen.
- Ein Term enthält keine Gleich - oder Ungleichheitszeichen.
- In einem Term können nur gleiche Variablen miteinander verrechnet werden.
- Liegen in einem Term Klammern vor, können diese aufgelöst werden, um den Term zu vereinfachen.
- Haben Variablen in einem Term Exponenten (Hochzahlen), dann können nur Variablen mit dem gleichen Exponenten verrechnet werden.
- Liegen Bruchterme vor, müssen die Brüche auf den kleinsten gemeinsamen Nenner gebracht werden (das kgV wird ermittelt), um miteinander verrechnet zu werden.
Nachweise
- Becker et al. (2015). Duden Formeln und Werte. Cornelsen Verlag.
- Hausleiter (2015). Mathematik - Aktuelles Grundwissen. Circon Verlag.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen