Springe zu einem wichtigen Kapitel
Das funktioniert mithilfe einer Gleichung. Diese kannst Du durch Umkehraufgaben lösen.
Umkehraufgabe Gleichungen – Grundlagen
Bevor Du Dir ansiehst, wie Du Gleichungen mithilfe von Umkehraufgaben lösen kannst, solltest Du Dir eine kurze Wiederholung zu Gleichungen ansehen.
Gleichungen bestehen aus zwei Termen, zwischen denen ein Gleichheitszeichen () steht.
Gleichungen verbinden zwei Objekte mithilfe des Gleichheitszeichens miteinander. Sie sagen aus, dass links und rechts genau dasselbe steht.
In der Mathematik beinhalten Gleichungen meistens sogenannte Variablen, welche z. B. mit x, y, z oder anderen Buchstaben bezeichnet werden und stellvertretend für einen beliebigen Wert stehen.
Im Bonbon-Beispiel von oben wäre die Gleichung:
Denn Du hast bereits 11 Bonbons und addierst dazu eine unbekannte Anzahl x, damit Du am Ende 18 Bonbons besitzt.
Doch wie löst Du so eine Gleichung?
Gleichungen können auf verschiedene Arten gelöst werden. Eine davon ist das Lösen durch Umkehraufgaben.
Umkehraufgabe Gleichungen – Erklärung
Was Umkehraufgaben genau sind und wie Du sie nutzen kannst, erfährst Du im folgenden Abschnitt.
Umkehraufgaben Gleichungen – Einfach erklärt
Umkehraufgaben sind dafür da, einfache lineare Gleichungen, die maximal eine Variable enthalten, zu lösen. Das sind Gleichungen, die z. B. die Form haben, wobei und für Zahlen stehen.
Doch was genau sind Umkehraufgaben denn nun überhaupt?
Umkehraufgaben bezeichnen den Vorgang, eine gegenteilige Rechenoperation durchzuführen.
Jede der Grundrechenarten Addition, Subtraktion, Multiplikation und Division besitzt dabei eine gegenteilige Rechenoperation. Welche das sind, zeigt Dir der nächste Abschnitt.
Umkehraufgabe Gleichungen – Formel
Die Umkehraufgabe der Multiplikation ist die Division und die Umkehraufgabe der Addition ist die Subtraktion.
In der folgenden Tabelle siehst Du, welche Rechenoperation Du bei Umkehraufgaben für die jeweiligen Grundrechenarten verwenden musst.
Grundrechenart | Gegenteilige Rechenoperation |
Addition | Subtraktion |
Subtraktion | Addition |
Multiplikation | Division |
Division | Multiplikation |
Das bedeutet also, dass die Addition und die Subtraktion jeweils Umkehraufgaben voneinander bilden. Genauso verhält es sich mit der Multiplikation und der Division.
Das liegt daran, dass bei der Addition etwas dazu getan wird, während bei der Subtraktion etwas abgezogen wird. Rechnest Du also ist das genau das Gegenteil von .
Die Multiplikation vervielfacht etwas, während die Division etwas wieder aufteilt. Somit ist das Gegenteil von .
Hast Du also eine Gleichung mit einer Rechenart, so bringst Du die Zahl, die auf der Seite der Variable steht, mit dem gegensätzlichen Rechenzeichen auf die andere Seite.
Gleichung | Umkehraufgabe |
Achtung: Für die Umkehraufgabe spielt bei der Addition und Multiplikation die Reihenfolge keine Rolle, bei der Subtraktion und Division muss die Reihenfolge beachtet werden.
Umkehraufgaben – Gleichungen berechnen und bestimmen
Hast Du eine Gleichung gegeben, die Du durch Umkehraufgaben lösen willst, siehst Du Dir zuerst an, welche Rechenzeichen sich in der Gleichung befinden. Demnach bildest Du dann die entsprechende Umkehraufgabe und kannst dann ausrechnen, was als Lösung für die entsprechende Variable herauskommt.
Umkehraufgaben – Gleichungen mit Addition
Wie Du inzwischen schon weißt, ist die Umkehrung der Addition die Subtraktion. Hast Du also eine Gleichung gegeben, in der die Addition vorkommt, kannst Du sie lösen, indem Du die Subtraktion anwendest. Dazu folgt ein kleines Beispiel:
Gegeben ist die Gleichung .
Du solltest hier die Subtraktion anwenden, um die Gleichung nach x aufzulösen.
Wie Du siehst, wird in der Gleichung eine 8 zu dem x addiert. Du bildest dementsprechend die Umkehraufgabe, indem Du die 8 mithilfe der Subtraktion auf die andere Seite bringst. Das geht so:
Abbildung 1: Umkehraufgabe Addition
Da Du die Gleichung lösen möchtest, also einen Wert für die Variable x finden möchtest, steht diese auf der einen Seite des Gleichheitszeichens jetzt allein. Du erhältst:
.
Die kannst Du jetzt im Kopf rechnen und erhältst diese Lösung für die Gleichung.
Wie sieht das Ganze aus, wenn das x hinter der Zahl steht?
Wenn die Gleichung etwa lautet, kannst Du trotzdem die gleiche Umkehraufgabe aufstellen.
Die Reihenfolge der gegebenen Gleichung spielt bei der Addition keine Rolle.
Umkehraufgaben – Gleichungen mit Subtraktion
Die Umkehrung zur Subtraktion ist die Addition. Sollst Du also eine Gleichung mit Subtraktion lösen, gehst Du wie in folgendem Beispiel vor.
Die Gleichung soll gelöst werden.
Mithilfe der Addition bringst Du die Zahl mit der umgekehrten Rechenoperation auf die andere Seite.
Abbildung 2: Umkehraufgabe Subtraktion
Dann kannst Du damit diese Umkehraufgabe aufstellen:
Als Ergebnis erhältst Du dann:
Es kann allerdings auch sein, dass bei der Subtraktion die Variable hinter der Zahl in der Gleichung steht und damit der Subtrahend ist. Das sieht dann so aus:
Die Gleichung lautet .
Hier ist es wichtig, auf die Reihenfolge zu achten. Das bedeutet, dass Du hier nicht mit der Addition arbeiten kannst. Dafür kannst Du das y und die 15 vertauschen.
Abbildung 3: Lösen mit Subtraktion
Die Gleichung, die Dich zur Lösung führt, sieht dann dementsprechend so aus:
Als Lösung erhältst Du also .
Umkehraufgaben – Gleichungen mit Multiplikation
Um Gleichungen mit der Multiplikation lösen zu können, wendest Du die Division an. Hier spielt die Reihenfolge ebenfalls keine Rolle.
Lautet Deine Gleichung etwa , so musst Du durch 7 dividieren.
Abbildung 4: Umkehraufgabe Multiplikation
Damit ist das die passende Umkehraufgabe:
Damit erhältst Du:
Diese Umkehraufgabe dient ebenfalls als Lösung für die Gleichung , bei der beide Faktoren vertauscht sind.
Umkehraufgaben – Gleichungen mit Division
Wenn Du eine Gleichung mit Division lösen möchtest, benötigst Du hierfür die Multiplikation. Hierbei spielt wieder die Reihenfolge eine wichtige Rolle.
Gegeben ist die Gleichung . Hier bildest Du die Umkehraufgabe mithilfe der Multiplikation.
Abbildung 5: Umkehraufgabe Division
Die Umkehraufgabe lautet:
Und die Lösung somit:
Bei der Division spielt die Reihenfolge der Gleichung wieder eine Rolle, weshalb Du für folgende Gleichung einen anderen Lösungsweg gehst.
Bei der Gleichung steht das x an zweiter Stelle und ist der Divisor, weshalb Du hier die Gleichung so veränderst: Du vertauschst wieder x und 11.
Abbildung 6: Lösen mit Division
Du erhältst:
Die Lösung lautet dann:
Wie Du vielleicht bereits gemerkt hast, kannst Du mithilfe von Umkehraufgaben bestimmte lineare Gleichungen lösen, jedoch keine quadratischen oder andere Gleichungsarten.
Doch woran liegt es, dass bei der Addition und Multiplikation die Reihenfolge keine Rolle spielt? Dafür kannst Du Dir diese kurze Erklärung zu Tauschaufgaben ansehen.
Umkehraufgaben vs. Tauschaufgaben
Zusätzlich zu Umkehraufgaben gibt es auch die sogenannten Tauschaufgaben. Bei diesen geht es nicht darum, die Aufgabe mit einer gegenteiligen Rechenoperation durchzuführen, sondern lediglich um das Vertauschen bestimmter Teile der Gleichung.
Du weißt nun, was Umkehraufgaben sind. Doch was genau sind Tauschaufgaben?
Tauschaufgaben sind Aufgaben, bei denen die Summanden oder Faktoren getauscht sind. Diese gibt es also nur für die Addition und Multiplikation.
Das liegt daran, dass die Addition und die Multiplikation kommutativ sind. Das bedeutet, dass es keine Rolle spielt, in welcher Reihenfolge Zahlen addiert bzw. multipliziert werden, das Ergebnis bleibt dasselbe.
Die Aufgabe hat die Tauschaufgabe .
Zur Aufgabe gibt es die Tauschaufgabe .
Doch was haben Tauschaufgaben jetzt mit Umkehraufgaben zu tun?
Umkehraufgaben zur Addition und Multiplikation sind immer gleich, egal an welcher Stelle die Variable in der Ursprungsaufgabe steht. Das liegt daran, dass die ursprüngliche Aufgabe mithilfe einer Tauschaufgabe immer so umgeformt werden kann, dass die Variable an erster Stelle steht. Hier ein kleines Beispiel dazu:
Die Aufgabe lautet
.
Ihre Tauschaufgabe lautet demnach
und so kann nun einfach die Umkehraufgabe gebildet und die Lösung herausgefunden werden:
Um zu überprüfen, ob Dein Ergebnis richtig ist, kannst Du immer Deine herausgefundene Zahl anstelle der Variable einsetzen und schauen, ob die Gleichung so stimmt. In diesem Fall setzt Du also 14 anstelle von x in die Aufgabe ein:
Diese Gleichung stimmt, also ist die Lösung richtig.
Wenn Du mehr darüber erfahren willst, was genau kommutativ bedeutet, schau gern in der Erklärung über das Kommutativgesetz nach.
Umkehraufgabe Gleichungen – Beispiele
Hier findest Du noch ein paar weitere Beispiele für das Lösen von Gleichungen mit Umkehraufgaben.
Gleichung | Umkehraufgabe | Lösung | Anmerkung |
Achtung: Hier kannst Du nicht mit der Addition arbeiten. Tausche x und 7! | |||
Achtung: Hier kannst Du nicht mit der Multiplikation arbeiten. Tausche x und 4! | |||
Umkehraufgaben Gleichungen erkennen – Aufgaben
Damit Du üben kannst, Gleichungen durch Umkehraufgaben zu lösen, findest Du nachfolgend ein paar Aufgaben zu dem Thema.
Aufgabe 1
Löse die Bonbonaufgabe von oben mithilfe von Umkehraufgaben: Du hast 11 Bonbons, jemand gibt Dir eine Tüte mit weiteren Bonbons. Nun hast Du insgesamt 18 Bonbons. Wie viele Bonbons befinden sich in der Tüte?
Lösung
Die passende Gleichung lautet
.
Die Umkehraufgabe bildest Du mithilfe der Subtraktion und erhältst:
Dies kannst Du ausrechnen und erhältst als Lösung .
In der Tüte befinden sich also 7 Bonbons.
Aufgabe 2
Löse die Gleichungen mithilfe von Umkehraufgaben.
a)
b)
c)
d)
e)
f)
Lösung
Hier findest Du die Umkehraufgaben und die Lösungen der Gleichungen.
a)
b)
c)
d)
e)
f) Hier tauschst Du die 6 und das x, um die Lösung zu erhalten:
Aufgabe 3
Ordne den Gleichungen aus der Tabelle die passenden Umkehraufgaben zu.
Gleichung | Umkehraufgabe |
a) | 1) |
b) | 2) |
c) | 3) |
d) | 4) |
e) | 5) |
f) | 6) |
Lösung
In folgender Tabelle sind die Umkehraufgaben ihren Gleichungen zugeordnet.
Gleichung | Umkehraufgabe |
a) | 3) |
b) | 5) |
c) | 1) |
d) | 2) |
e) | 6) |
f) | 4) |
Umkehraufgabe Gleichungen – Das Wichtigste
- Umkehraufgaben bezeichnen den Vorgang, eine gegenteilige Rechenoperation durchzuführen.
- Die gegenteilige Rechenoperation zur Addition ist die Subtraktion und umgekehrt.
- Beispiel:
Aufgabe Umkehraufgabe
- Beispiel:
- Die gegenteilige Rechenoperation zur Multiplikation ist die Division und umgekehrt.
- Beispiel:
Aufgabe Umkehraufgabe
- Beispiel:
- Bei der Subtraktion und Division spielt die Reihenfolge der Zahlen bzw. Variablen eine Rolle beim Bilden der Umkehraufgabe, bei der Addition und Multiplikation ist die Reihenfolge unwichtig.
- Beispiel: Bei der Aufgabe steht die Variable an zweiter Stelle und bildet somit den Subtrahenden. Hier kann keine Umkehraufgabe mithilfe der Addition gebildet werden. Stattdessen können das x und die 7 ausgetauscht werden und Du erhältst .
- Tauschaufgaben sind Aufgaben, bei denen die Summanden oder Faktoren getauscht sind. Diese gibt es also nur für die Addition und Multiplikation.
Nachweise
- Heitmann (2020). #einfachmathemagisch - Terme und Gleichungen: Schülerarbeitsheft (7. bis 10. Klasse). Auer Verlag.
- Graef (2007). Mein Grundschulwissen: Lernen und Nachschlagen. Tessloff Verlag.
Lerne schneller mit den 3 Karteikarten zu Umkehraufgabe Gleichungen
Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.
Häufig gestellte Fragen zum Thema Umkehraufgabe Gleichungen
Was ist eine Umkehraufgabe Beispiel?
Umkehraufgaben bezeichnen den Vorgang, eine gegenteilige Rechenoperation durchzuführen. Die gegenteilige Rechenoperation zur Addition ist die Subtraktion und die gegenteilige Rechenoperation zur Multiplikation ist die Division. Ein Beispiel für eine Umkehraufgabe zu 3+7=10 zu 7=10-3.
Was sind Umformungen?
Die Umformung einer Gleichung formt die Gleichung um, ohne den Wert der Gleichung zu verändern.
Wie rechnet man eine Gleichung rückwärts?
Eine Gleichung kann mithilfe von Umkehraufgaben rückwärts gerechnet werden. Umkehraufgaben bezeichnen den Vorgang, eine gegenteilige Rechenoperation durchzuführen. Dabei wird die Addition zur Subtraktion sowie die Multiplikation zur Division und umgekehrt.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr