Ableitung ln

\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Du kennst bereits die natürliche Logarithmusfunktion und fragst Dich, wie Du diese ableiten kannst? Diese Ableitung brauchst Du zum Beispiel bei der Berechnung von Extremstellen oder Wendepunkten.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Ableitung ln Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Um Dich in das Thema der ln-Funktion zu vertiefen, schau gerne in den Artikel "Natürlicher Logarithmus" rein!

    Allgemeines zur Ableitung der ln-Funktion

    Die ln-Funktion entsteht aus der allgemeinen Logarithmusfunktion. Wie diese abgeleitet wird, erfährst Du im Folgenden.

    Ln ableiten Ableitung Logarithmusfunktion StudySmarterAbbildung 1: Allgemeine Ableitung der Logarithmusfunktion

    Allgemeine Logarithmusfunktion ableiten

    Die Ableitung \(f'(x)\) der allgemeinen Logarithmusfunktion \(f(x) = \log_b(x)\) lautet:\[f'(x) = \frac{1}{\ln(b)\cdot x}\]f'(x)=1ln(b)·x

    Um mehr über die Herleitung der Ableitung der allgemeinen Logarithmusfunktion zu erfahren, schau im Artikel "Logarithmus ableiten" vorbei.

    Natürliche Logarithmusfunktion ableiten – Ableitung ln

    Die Ableitung \(f'(x)\)der natürlichen Logarithmusfunktion \(f(x) = \ln{(x)}\) lautet:

    \(f'(x) = \frac{1}{x}\)

    Die ln-Funktion ist eine spezielle Logarithmusfunktion, bei der die Basis a der Eulerschen Zahl eentspricht. Formulieren wir nun die Ableitung f'(x) der ln-Funktion.

    Herleitung der Ableitung der natürlichen Logarithmusfunktion

    Die Ableitung \(f'(x)\) kannst Du Dir mithilfe des Differentialquotienten herleiten.

    Mehr dazu findest Du in den Artikeln "Differentialquotient" und "Logarithmusgesetze".

    Die Ableitung \(f'(x)\) ist mithilfe des Differentialquotienten wie folgt definiert:\[f'(x) =\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\]

    Setzt Du jetzt die ln-Funktion ein, erhältst Du folgenden Ausdruck:\[f'(x) =\lim_{h\rightarrow 0}\frac{ln(x+h)-ln(x)}{h}\]

    An dieser Stelle kannst du die Produktregel des Logarithmusgesetz' anwenden.

    Zur Erinnerung: Produktregel des Logarithmusgesetz': \(ln(a)-ln(b)=ln(\frac{a}{b}\)

    Dadurch erhältst Du Folgendes:\[f'(x) = \lim_{h\rightarrow 0}(\frac{1}{h}\cdot\ln(\frac{x+h}{x}))\]

    Als Nächstes erweiterst Du den Ausdruck um \(1 = \frac{x}{x}\) und schreibst mithilfe des Kommutativgesetzes wie folgt um:\begin{align}f'(x) &= \lim_{h\rightarrow 0}(\frac{1}{h}\cdot \frac{x}{x}\cdot\ln(\frac{x+h}{x}))\\&=\lim_{h\rightarrow 0}(\frac{1}{x}\cdot \frac{x}{h} \cdot \ln(\frac{x+h}{x}))\end{align}

    An dieser Stelle wendest Du wieder ein Logarithmusgesetz an.

    Zur Erinnerung: Potenzregel des Logarithmusgesetzes: \(b\cdot \ln(a) = ln(a^b)\)

    Wendest Du nun dieses Logarithmusgesetz und die Rechenregeln für Grenzwerte an, erhältst Du folgenden Ausdruck:\begin{align} f'(x) &= \frac{1}{x}\lim_{h\rightarrow 0}(\frac{x}{h}\cdot ln(\frac{x+h}{x}))\\&= \frac{1}{x}\lim_{h\rightarrow 0}(ln(\frac{x+h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x+h}{x})^{\frac{x}{h}})\end{align}

    Nun wird der Ausdruck der inneren Klammer noch einmal umgeschrieben:\begin{align}f'(x) &= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x+h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(\frac{x}{x}+\frac{h}{x})^{\frac{x}{h}})\\&= \frac{1}{x}\ln(\lim_{h\rightarrow 0}(1+\frac{h}{x})^{\frac{x}{h}})\end{align}\end{align}

    Um jetzt weiterzumachen, benötigst Du noch die Definition der Eulerschen Zahl e.

    Zur Erinnerung: Definition der Eulerschen Zahl: \(e=\lim_{n\rightarrow\infty}(1+\frac{1}{n})^n\)

    Es gilt nun Folgendes:\[\lim_{h\rightarrow 0}((1+\frac{h}{x})^{\frac{x}{h}}=e\]

    Mit diesem Ausdruck und dem Wissen, dass \(\ln(e)\) dem Wert 1 entspricht, erhältst Du folgende Ableitung der natürlichen Logarithmusfunktion:\[f'(x)=\frac{1}{x}\cdot\ln(e) =\frac{1}{x}\]

    Ableitung der erweiterten ln-Funktion

    Die Ableitung der erweiterten ln-Funktion brauchst Du hauptsächlich, wenn du Extrempunkte und Wendepunkte berechnen sollst. Anders, als bei der erweiterten e-Funktion, gibt es bei der Logarithmusfunktion keine allgemeinen Parameter.

    Du hast eine Funktion \(f(x)\) mit \(f(x) = {\color{gr}3\cdot\ln({\color{r}14x+1})}\). Möchtest Du diese Funktion nun ableiten, benötigst Du die Kettenregel und die Faktorregel.

    Zur Erinnerung:

    • Kettenregel: f(x)=g(h(x))ableitenf'(x)=g'(h(x))·h'(x)\(f(x) = g(h(x))\rightarrow f'(x)=g'(h(x))\cdot h'(x)\)
    • Faktorregel: \(f(x) = a\cdot g(x) \rightarrow f'(x) = a\cdot g'(x)\)
    Um die Kettenregel anzuwenden, definierst Du zuerst die äußere und die innere Funktion:\begin{align} g(x) &={\color{gr}3\cdot ln(x)}\\h(x) &={\color{r} 14x+1}\end{align}

    Nun brauchst Du noch jeweils die Ableitung. Es ergeben sich folgende beiden Ableitungen:\begin{align}g'(x)&=\frac{1}{x}\\h'(x)&=14\end{align}

    Wendest Du jetzt die Faktorregel und die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung \(f'(x)\) für die Funktion f(x) mit \(f(x)=3\cdot(14x+1)\):

    \begin{align}f'(x)&=g'(h(x))\cdot h'(x)\\&=3\cdot \frac{1}{h(x)}\cdot h'(x)\\&=3\cdot\frac{1}{14x+1}\cdot 14\\&=42\cdot\frac{1}{14x+1}\end{align}

    Folgendes lässt sich festhalten:

    Die Ableitung \(f'(x)\) einer erweiterten natürlichen Logarithmusfunktion \(f(x) = a\cdot\ln({\color{r}bx+c})\)mit \(a,\,c\neq0\) lautet:\[f'(x) = a\cdot{\color{r} b}\cdot\frac{1}{\color{r}bx+c}\]

    Immer dann, wenn in der Klammer des natürlichen Logarithmus nicht nur "x" steht, musst Du die Kettenregel anwenden.

    Im Folgenden findest Du ein Beispiel, bei dem Du die Kettenregel anwenden musst.

    Aufgabe 1

    Bestimme die Ableitung \(f'(x)\) der Funktion \(f(x) = \ln(x^3+2x^2)\).

    Lösung zur Aufgabe 1

    Da Du wieder die Kettenregel anwenden musst, musst Du die innere und äußere Funktion definieren:\begin{align}g(x)&=ln(x)\\h(x)&=x^3+2x^2\end{align}Jetzt brauchst Du jeweils wieder die Ableitung:\begin{align}g'(x) &= \frac{1}{x}\\h'(x)&=3x^2+4x\end{align}

    Wendest Du nun wieder die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung\begin{align}f'(x)&= g'(h(x))\cdot h'(x)\\&=\frac{1}{h(x)}\cdot h'(x) \\&= \frac{1}{x^3+2x^2}\cdot(3x^2+4x)\\&=\frac{3x+4}{x^2+2x}\end{align}

    Natürliche Logarithmusfunktion mit Bruch ableiten

    In der folgenden Aufgabe findest Du ein Beispiel mit einem Bruch als innerer Funktion.

    Aufgabe 2

    Bestimme die Ableitung \(f'(x)\) der Funktion \(f(x) = \ln(\frac{1}{x^2}\).

    Lösung zur Aufgabe 2

    Auch hier wendest Du die Kettenregel an und definierst die innere und äußere Funktion:\begin{align}g(x)&=\ln(x)\\h(x)&=\frac{1}{x^2}\end{align}

    Jetzt brauchst Du wieder die jeweiligen Ableitungen. Da Du die innere Funktion \(h(x)\) auch mit \(h(x)=x^{-2}\) umschreiben kannst, erhältst Du folgende zwei Ableitungen:\begin{align}g'(x)&=\frac{1}{x}\\h'(x)&=-2x^{-3}=-\frac{2}{x^3}\end{align}

    Wendest Du nun die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung:\begin{align}f'(x)&=g'(h(x))\cdot h'(x)\\&=\frac{1}{h(x)}\cdot\frac{-2}{x^3}\\&=x^2\cdot \frac{-2}{x^3}\\&=-\frac{2}{x}\end{align}

    Ableitung ln – Das Wichtigste auf einen Blick

    • Die Ableitung \(f'(x)\) der ln-Funktion \(f(x) = \ln(x)\) lautet: \(f'(x)=\frac{1}{x}
    • Die Ableitung \(f'(x)\) der natürlichen Logarithmusfunktion \(f(x) = a\cdot\ln(bx+c)\) lautet: \(f'(x) = a\cdot b \frac{1}{bx +c}\)
    • Immer dann, wenn in der Klammer vom natürlichen Logarithmus nicht nur "x" steht, musst Du die Kettenregel anwenden:
      • Zuerst definierst Du die innere und die äußere Funktion.

      • Dann bildest DU jeweils die Ableitung der inneren und äußeren Funktion.

      • Zum Schluss müssen die Ableitungen und die Funktionen eingesetzt werden, um die gesamte Ableitung zu erhalten.

    Lerne schneller mit den 0 Karteikarten zu Ableitung ln

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Ableitung ln
    Häufig gestellte Fragen zum Thema Ableitung ln

    Was ist eine ln Funktion?

    Die ln Funktion ist der natürliche Logarithmus mit der Basis b=e.

    Die ln Funktion ist zudem die Umkehrfunktion der e-Funktion.

    Was ist die Ableitung von ln?

    Die Ableitung der Funktion f(x)=ln(x) ist f'(x)=1/x.

    Was ist die Ableitung von ln x?

    Die Ableitung der Funktion f(x)=ln(x) ist f'(x)=1/x.

    Was ist die Ableitung von log?

    Die Ableitung der Funktion f(x)=logb(x) ist f'(x)=1/(ln(b)*x).

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 7 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren