Bestimmtes Integral

Die Integralrechnung, insbesondere das Rechnen mit bestimmten Integralen, findest Du in vielen Berufen. So müssen bei Konstruktionen beispielsweise die Flächen von bestimmten Formen berechnet oder in der Produktherstellung die Menge an Materialien für gewisse Produkte bestimmt werden.

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Bestimmtes Integral Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 19.12.2022
  • 7 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 19.12.2022
  • 7 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

In dieser Erklärung erfährst Du, wie Flächen und bestimmte Integrale zusammenhängen, wie Du ein bestimmtes Integral berechnen kannst, welche Regeln es für bestimmte Integrale gibt und was die partielle Integration ist. Außerdem findest Du hier für ein bestimmtes Integral Aufgaben.

Alles rund um das Thema Integrale findest Du in der Erklärung „Integralrechnung“.

Teste dein Wissen mit Multiple-Choice-Karteikarten

1/3

Entscheide, welcher der erste Schritt beim Ausrechnen von bestimmten Integralen ist.

1/3

Bewerte die folgende Aussage: Ein bestimmtes Integral ist ein unbestimmtes Integral mit konkreten Integrationsgrenzen.

1/3

Entscheide, welches der folgenden Integrale kein bestimmtes Integral ist.

Weiter

Bestimmtes Integral Definition

Das bestimmte Integral abf(x)dx beschreibt die Integration einer Funktion f(x) mit den Integrationsgrenzen a und b.

Das Ergebnis eines bestimmten Integrals einer reellen Funktion f(x) lässt sich im zweidimensionalen Koordinatensystem als Fläche zwischen dem Graphen der Funktion f(x) und der x-Achse innerhalb der Integrationsgrenzen a und b deuten.


Diese Fläche kannst Du Dir zum Beispiel so vorstellen, wie in der Abbildung 1. Hierbei kann die blaue Fläche über das bestimmte Integral berechnet werden.

Bestimmtes Integral Fläche StudySmarterAbb. 1 - Fläche unter der Kurve.

Aber wie kannst Du diese Fläche berechnen? Dazu benötigst Du eine Formel.

Bestimmtes Integral ausrechnen – Formel

Die Formel für die Berechnung bestimmter Integrale liefert der Hauptsatz der Differential- und Integralrechnung.

Bestimmte Integral lassen sich über die Formel

abf(x)dx=[F(x)]ab=F(b)F(a)

lösen, indem die Integrationsgrenzen a und b in eine Stammfunktion F(x) der Funktion f(x) eingesetzt werden und die Differenz berechnet wird.

Die Integrationskonstante C entfällt bei der Berechnung, da:

F(b)+CF(a)C=F(b)F(a)

Zum Ausrechnen machst Du also folgende Schritte:

  1. Berechne eine Stammfunktion F(x).
  2. Setze die Integrationsgrenzen a und b ein und berechne die Differenz F(b)F(a).

Wie Du die Stammfunktion berechnest, erfährst Du in der Erklärung „Stammfunktion bilden“.

Zum besseren Verständnis kannst Du Dir im nächsten Kapitel direkt ein Beispiel zum bestimmten Integral ansehen.

Bestimmtes Integral berechnen Bestimmtes Integral Beispiel

Lege Dir die Formelsammlung gerne daneben, wenn Du eine benutzen darfst!

Berechne das Integral 124xdx.

Lösung

Die zu integrierende Funktion f(x) lautet f(x)=4x. Hierfür berechnest Du also zunächst die Stammfunktionen F(x)+C. Diese lauten in dem Fall F(x)=2x2+C, denn es gilt:

F(x)=[2x2+C]=4x=f(x)

Nun kannst Du die Integrationsgrenzen a=1 und b=2 in die Stammfunktion F(x)=2x2 einsetzen und voneinander abziehen: F(b)F(a)=222212=82=6

Damit hast Du das bestimmte Integral ausgerechnet und es gilt: 124xdx=6

Die Fläche A, die von den Integrationsgrenzen 1 und 2 sowie vom Funktionsgraph der Funktion f(x)=4x und der x-Achse eingeschlossen wird, beträgt also 6FE (Flächeneinheiten).

In der folgenden Abbildung kannst Du die Berechnung noch einmal nachvollziehen.

Bestimmtes Integral Beispiel StudySmarterAbb. 2 – Beispiel bestimmtes Integral.

Rechnest Du mit bestimmten Integralen, so sind einige Regeln zu beachten.

Finde relevante Lernmaterialien und bereite dich auf den Prüfungstag vor

Kostenlos registrieren
Bestimmtes Integral

Bestimmtes Integral Regeln

Beim Rechnen mit bestimmten Integralen gibt es gewisse Regeln oder auch Eigenschaften, die Dir bei der Berechnung helfen.

BeschreibungRegelBeispiel
Gleiche obere und untere Integrationsgrenzeaaf(x)dx=0223x2dx=0
Vertauschung der Integrationsgrenzenabf(x)dx=baf(x)dx146xdx=416xdx
Faktorregelabkf(x)dx=kabf(x)dx123exdx=312exdx
Summenregelabf(x)+g(x)dx=abf(x)dx+abg(x)dxab(3x2+7x)dx=ab3x2dx+ab7xdx
Zusammenfassen von Integrationsintervallenabf(x)dx+bcf(x)dx=acf(x)dx21x3dx+12x3dx=22x3dx

Ein weiteres Hilfsmittel bei der Integration von bestimmten Integralen kann die sogenannte partielle Integration sein. Sieh Dir dazu gerne folgende Vertiefung an!

Partielle Integration bestimmtes Integral

Beim Integrieren bestimmter Funktionen bietet sich die sogenannte „partielle Integration“ an. Das ist der Fall, wenn Du ein Produkt von Funktionen integrieren möchtest. Was für das Differenzieren, also das Ableiten, die Produktregel ist, ist beim Integrieren die partielle Integration: f(x)g(x)dx=f(x)g(x)f(x)g(x)dx

Das Ziel der partiellen Integration ist es, das zu integrierende Produkt möglichst zu vereinfachen.

Mehr dazu erfährst Du in der Erklärung „Partielle Integration“.

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Bestimmtes Integral

Bestimmtes Integral Aufgaben

Teste hier Dein Wissen über bestimmte Integrale anhand der folgenden Aufgaben!

Aufgabe 1

Berechne das Integral 143x2+2xdx.

Lösung

Mit der Summenregel gilt: 143x2+2xdx=143x2dx+142xdx

Du kannst also beide Stammfunktionen einzeln berechnen und die Integrationsgrenzen einsetzen. Dann gilt: 143x2+2xdx=143x2dx+142xdx=[x3]14+[x2]14=4313+(4212)=641+(161)=78

Aufgabe 2

Bestimme den Wert des folgenden Integrals anhand des Funktionsgraphen und der beiden Integrationsgrenzen: 15f(x)dx

Ein Kästchen ist dabei 1 Flächeneinheit (FE).

Bestimmtes Integral Aufgabe StudySmarterAbb. 3 – Aufgabe 3.

Lösung

Da der Wert des bestimmten Integrals dem Flächeninhalt entspricht, den der Graph der Funktion f(x) in den Integrationsgrenzen mit der x-Achse einschließt, kann der Wert des Integrals als Dreiecksfläche bestimmt werden.

Alternativ kannst Du die Funktion f(x) auch über die Geradengleichung y=mx+t ermitteln und anschließend integrieren. Wie Du die Werte t und m ermittelst, erfährst Du im Artikel „Geradengleichung aufstellen“.

Dazu benötigst Du die Formel für die Fläche eines Dreiecks. Diese lautet A=12gh,wobei g die Länge der Grundseite und h die Höhe des Dreiecks sind.

Diese beiden Größen kannst Du am Koordinatensystem ablesen: Die Höhe beträgt h=4LE, die Grundseite g=5LE. Setze dies nun in die Formel ein: A=125LE4LE=10FE

Damit gilt dann für das Integral: 15f(x)dx=10

Bestimmtes Integral – Das Wichtigste

  • Das bestimmte Integral ist definiert über die Form abf(x)dx mit den Integrationsgrenzen a und b.
  • Das Ergebnis eines bestimmten Integrals einer reellen Funktion beschreibt die Fläche zwischen dem Graphen der Funktion und der x-Achse innerhalb der Integrationsgrenzen a und b.
  • Ein bestimmtes Integral wird berechnet über die Formel: abf(x)dx=[F(x)+C]ab=F(b)F(a)
  • Verschiedene Regeln und Integrationstechniken, wie die Summenregel, Faktorregel und die partielle Integration, helfen bei der Berechnung von bestimmten Integralen.

Nachweise

  1. Papula (2006). Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Springer-Verlag.
  2. Luderer, Würker (2008). Einstieg in die Wirtschaftsmathematik. Springer-Verlag.
Häufig gestellte Fragen zum Thema Bestimmtes Integral

Was ist ein bestimmtes Integral?

Ein bestimmtes Integral beschreibt die Integration einer Funktion f(x) mit den Integrationsgrenzen a und b.

Was gibt das bestimmte Integral an?

Das bestimmte Integral einer Funktion gibt die Fläche an, die der Graph der Funktion f(x) im Intervall [a,b] mit der x-Achse einschließt. 

Welche Arten von Integralen gibt es?

Es gibt sowohl bestimmte als auch unbestimmte Integrale. Zudem gibt es uneigentliche Integrale.

Was ist die obere und untere Grenze beim Integral?

Die obere und untere Grenze des Integrals beschreiben das Intervall [a,b], das die Fläche begrenzt, die der Graph der Funktion mit der x-Achse einschließt.

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Mathe Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren