\[f(x)=x^2\]
bilden. Dabei stößt Du auf den Begriff „Differenzierbarkeit“. Wie die genaue Definition lautet und wie die Differenzierbarkeit gezeigt wird, erfährst Du hier.
Differenzierbarkeit von Funktionen
Die Differenzierbarkeit und das Ableiten, auch Differenzieren genannt, einer Funktion \(f(x)\) gehören unmittelbar zueinander.
Differenzierbarkeit Definition einer Stelle \(x_0\)
Zuerst wird die Differenzierbarkeit an einer beliebigen Stelle \(x_0\) einer Funktion \(f(x)\) betrachtet.
Eine Funktion \(f(x)\) ist an jeder Stelle \(x_0\) differenzierbar, an der der beidseitige Grenzwert des Differenzenquotienten exisitert.
\[ \lim \limits_{h \to 0} {\frac{f(x_0+h)-f(x_0)}{h}}\]
Der Differentialquotient, also der Grenzwert des Differenzenquotienten, kann auch als die Ableitung \(f'(x)\) einer Funktion \(f(x)\) an der Stelle \(x_0\) interpretiert werden.
Zur Erinnerung:
\[ \underbrace{\lim \limits_{h \to 0} \overbrace {\frac{f(x_0+h)-f(x_0)}{h}}^{\text{Differenzenquotient}} }_{\text{Differen}\text{tialquotient}} \]
Damit ergibt sich die folgende verkürzte Definition.
Eine Funktion \(f(x)\) ist genau dann an der Stelle \(x_0\) differenzierbar, wenn an dieser Stelle \(x_0\) eine Ableitung \(f'(x_0)\) existiert.
Tipp:
Als Faustregel kannst Du Dir merken, dass eine Stelle \(x_0\) genau dann differenzierbar ist, wenn Du grafisch auch genau eine eindeutig definierte Tangente anlegen kannst.
Um Dir die Definition näherzubringen, schau Dir zuerst eine Anwendung der Differenzierbarkeit an.
Wenn Du folgende Funktion \(f(x)\) mit \(f(x)=x^2\) gegeben hast, kannst Du an die Stelle \(x_0=1\) eine Tangente anlegen.
Zur Erinnerung:
- Die Steigung einer Tangenten im Punkt \(x_0\) entspricht der Ableitung \(f'(x_0)\) der Funktion \(f(x)\).
Dies sieht wie folgt aus.
Abb. 1 - Differenzierbarkeit an einer Stelle.
Zudem kannst Du mit Hilfe der Potenzregel die Ableitung bilden.
Zur Erinnerung:
- Potenzregel: \(f(x)=x^n \xrightarrow {Ableitung} f'(x)=n \cdot x^{n-1}\)
Es ergibt sich damit von der Funktion \(f(x)\) mit \(f(x)=x^2\) die folgende Ableitung.
\[f'(x)=2x\]
Die Ableitung an der Stelle \(x_0=1\) lautet damit wie folgt.
\[f'(1)=2 \cdot 1=2\]
Da an der Stelle \(x_0=1\) eine Ableitung existiert und Du somit eindeutig eine Tangente anlegen kannst, ist die Funktion \(f(x)\) mit \(f(x)=x^2\) an dieser Stelle differenzierbar.
Seither hast Du die Differenzierbarkeit von Funktionen an einer beliebigen, aber fest gewählte Stelle \(x_0\) betrachtet.
Differenzierbarkeit Definition einer Funktion
Doch Du kannst diese Erkenntnis der Differenzierbarkeit auch auf den gesamten Definitionsbereich ausweiten.
Damit ergibt sich für eine Funktion \(f(x)\) auf ihrem gesamten Definitionsbereich \(D_f\) folgende Schlussfolgerung.
Existiert bei einer Funktion \(f(x)\) an jeder beliebigen Stelle \(x_0\) in ihrem Definitionsbereich \(D_f\) eine Ableitung \(f'(x_0)\), so wird die Funktion \(f(x)\) differenzierbar genannt.
Sollte eine Funktion \(f(x)\) eine Definitionslücke besitzen, ist dies irrelevant, da diese Stelle nicht zum Definitionsbereich \(D_f\) dieser Funktion gehört.
Auch diese Definition kannst Du direkt an Deinem Eingangsbeispiel anwenden.
Aus dem vorherigen Beispiel ergibt sich folgendes Schaubild der Ableitung \(f'(x)\) mit \(f'(x)=2x\) von der Funktion \(f(x)\) mit \(f(x)=x^2\).
Abb. 2 - Differenzierbarkeit im gesamten Definitionsbereich.
Da damit, ohne Einschränkungen, eine Ableitung \(f'(x)\) im gesamten Definitionsbereich \(D_f=( \infty , \infty )\) existiert, ist die Funktion \(f(x)\) mit \(f(x)=x^2\) differenzierbar.
Zudem gibt es eine weitere Eigenschaft, die aus der Differenzierbarkeit geschlussfolgert werden kann.
Zusammenhang von Stetigkeit und Differenzierbarkeit
Welchen Zusammenhang gibt es zwischen Stetigkeit und Differenzierbarkeit?
Jede Funktion \(f(x)\), die differenzierbar ist, ist auch stetig.
Damit gilt, dass eine Funktion \(f(x)\), die nicht stetig ist, automatisch auch nicht differenzierbar ist. Die Umkehrung gilt jedoch nicht. Nur weil eine Funktion stetig ist, muss sie nicht differenzierbar sein.
Zur Erinnerung:
Stetigkeit einer Funktion \(f(x)\) bedeutet, dass diese Funktion \(f(x)\) einen Graphen im Definitionsbereich \(D_f\) ohne Unterbrechung besitzt. Theoretisch könntest Du dadurch den Graphen zeichnen, ohne den Stift einmal absetzen zu müssen.Mehr dazu kannst Du in unserer Erklärung „Stetigkeit“ nachlesen.
Schau Dir dazu direkt eine spezielle Funktion \(f(x)\) an.
Wenn Du die Funktion \(f(x)\) mit \(f(x)=\dfrac{1}{x^2}\) gegeben hast, kannst Du deren Definitionsbereich bestimmen.
\[D_f=\mathbb{R} \setminus \{ 0 \}\]
Das Schaubild der Funktion \(f(x)\) sieht folgendermaßen aus.
Abb. 3 - Stetigkeit und Differenzierbarkeit.
Obwohl Du hier beim Zeichnen den Stift absetzen musst, ist diese Funktion stetig. Dies liegt daran, dass die Stelle \(x_0=0\) nicht im Definitionsbereich \(D_f\) der Funktion \(f(x)\) enthalten ist. Innerhalb des Definitionsbereichs für \(x<0\) und \(x>0\) kannst Du den Graphen ohne Unterbrechung zeichnen.
Da also für alle Stellen \(x_0\) im Definitionsbereich \(D_f\) eine Ableitung existiert, ist die Funktion in ihrem Definitionsbereich differenzierbar.
Wie lässt sich allgemein bei einer Funktion \(f(x)\) die Differenzierbarkeit prüfen?
Differenzierbarkeit prüfen
In vielen Fällen kannst Du die Ableitung \(f'(x)\) mit Hilfe verschiedener Ableitungsregeln berechnen. Wenn sich die Ableitung \(f'(x)\) einer Funktion \(f(x)\) mit Hilfe dieser Ableitungsregeln berechnen lässt (und zwar ohne Einschränkungen), dann ist diese Funktion \(f(x)\) differenzierbar.
Alternativ zu den bekannten Ableitungsregeln kann dies auch mit Hilfe des Differentialquotienten überprüft werden.
Der Differentialquotient der Funktion \(f(x)\) mit \(f(x)=x^2\) lautet wie folgt.
\begin{align}f'(x_0)&=\lim \limits_{h \to 0} {\frac{f(x_0+h)-f(x_0)}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{(x_0+h)^2-{x_0}^2}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{\cancel{{x_0}^2}+2 \cdot x_0 \cdot h+h^2 \cancel{-{x_0}^2}}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{2 \cdot x_0 \cdot \cancel{h}+h\cancel{^2}}{\cancel{h}}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {2 \cdot x_0 +h}\end{align}
Wendest Du nun die Grenzwertgesetze an, so erhältst Du folgenden Ausdruck.\[f'(x_0)=\lim \limits_{h \to 0} {2 \cdot x_0}+\lim \limits_{h \to 0} {h}\]
Lässt Du nun \(h\) gegen \(0\) laufen, so ist der erste Ausdruck unabhängig von \(h\) und der zweite ergibt \(0\).
\begin{align}f'(x_0)&=2 \cdot x_0+0\\f'(x_0)&=2 \cdot x_0\end{align}
Damit ist die Funktion \(f(x)\) mit \(f(x)=x^2\) differenzierbar.
Es gibt Funktionen, die weisen sogenannte kritische Stellen auf. Diese müssen dann gesondert betrachtet werden.
Nicht Differenzierbarkeit zeigen
Existiert bei einer Funktion \(f(x)\) eine kritische Stelle, dann muss dort der linksseitige und rechtsseitige Grenzwert berechnet werden. Ein Beispiel dafür ist die Funktion \(f(x)\) mit \(f(x)=|x|\).
Die Betragsfunktion \(f(x)=|x|\) lässt sich in zwei bzw. drei verschiedene Funktionen überführen. Für \(x<0\) entspricht es der Funktion \(g_1(x)=-x\), während sie für \(x>0\) der Funktion \(g_2(x)=x\) entspricht. Dies lässt sich auch folgendermaßen schreiben.
\[f(x)=\left\{\begin{array}{ll} -x&, & x<0 \\0&,&x=0\\x&, & x>0\end{array}\right. \]
Der Graph der Betragsfunktion \(f(x)=|x|\) sieht wie folgt aus.
Abb. 4 - Differenzierbarkeit der Betragsfunktion.
Es lässt sich gut erkennen, dass die Funktion \(f(x)\) an der Stelle \(x_0=0\) einen Knick macht.
Jede Funktion \(f(x)\), die einen Knick an der Stelle \(x_0\) macht, ist an dieser Stelle zwar stetig, aber nicht differenzierbar.
Mit Hilfe der Potenzregel lassen sich die Funktionen \(g_1(x)\) und \(g_2(x)\) ableiten.
\begin{align}g_1'(x)&=-1\\g_2'(x)&=1\end{align}
Damit ergibt sich, dass die Betragsfunktion \(f(x)=|x|\) für \(x <0\) und \(x>0\).
Doch was ist mit der Stelle \(x_0=0\)? An dieser muss nun der linksseitige und rechtsseitige Grenzwert des Differenzenquotienten betrachtet werden.
Beim linksseitigen Grenzwert für die Funktion \(g_1(x)\) gilt:
\begin{align}f'(x_0^-)&=\lim \limits_{h \to 0^-} {\frac{f(x_0+h)-f(x_0)}{h}} \\[0.2cm]g_1'(x_0)&=\lim \limits_{h \to 0} {\frac{g_1(x_0+h)-g_1(x_0)}{h}} \\[0.2cm]g_1'(x_0) &=\lim \limits_{h \to 0} {\frac{-(x_0+h)-(-x_0)}{h}} \\[0.2cm]g_1'(x_0) &=\lim \limits_{h \to 0} {\frac{\cancel{-x_0}-h\cancel{+x_0}}{h}} \\[0.2cm]g_1'(x_0) &=\lim \limits_{h \to 0} {-\frac{\cancel{h}}{\cancel{h}}} \\[0.2cm]g_1'(x_0) &=\lim \limits_{h \to 0} {-1} =-1\end{align}
Beim rechtsseitigen Grenzwert für die Funktion \(g_2(x)\) gilt:
\begin{align}f'(x_0^+)&=\lim \limits_{h \to 0^+} {\frac{f(x_0+h)-f(x_0)}{h}} \\[0.2cm]g_2'(x_0) &=\lim \limits_{h \to 0} {\frac{g_2(x_0+h)-g_2(x_0)}{h}} \\[0.2cm]g_2'(x_0) &=\lim \limits_{h \to 0} {\frac{\cancel{x_0}+h\cancel{-x_0}}{h}} \\[0.2cm]g_2'(x_0) &=\lim \limits_{h \to 0} {\frac{\cancel{h}}{\cancel{h}}} \\[0.2cm]g_2'(x_0) &=\lim \limits_{h \to 0} {1} =1\end{align}
Damit ergeben sich für den linksseitigen und rechtsseitigen Grenzwert unterschiedliche Werte.
\[g_1'(x_0)=-1 \neq g_2'(x_0)=1\]
Damit ist die Betragsfunktion \(f(x)=|x|\) nicht differenzierbar.
Hier tritt genau der Fall ein, dass an der Stelle \(x_0=0\) mehrere Tangenten angelegt werden könnten, die die Funktion \(f(x)=|x|\) berühren. Damit ist die Funktion \(f(x)=|x|\) an der Stelle \(x_0\) nicht differenzierbar und damit ist die Funktion \(f(x)\) nicht differenzierbar.
Eine weitere Möglichkeit, um zu zeigen, dass eine Funktion \(f(x)\) nicht differenzierbar ist, ist, dass eine Funktion \(f(x)\) nicht stetig ist, also eine Definitionslücke besitzt, denn dann ist die Funktion \(f(x)\) automatisch nicht differenzierbar.
Schau Dir die folgende Tabelle an, die Dir einen kurzen Überblick darüber liefert, wie sich grafisch beurteilen lassen kann, ob eine Funktion \(f(x)\) nicht differenzierbar ist.
Grafische Beurteilung für NICHT Differenzierbarkeit |
Nicht stetig und damit nicht differenzierbar | Stetig, aber nicht differenzierbar |
Der Graph besitzt an einer Stelle \(x_0\) im Definitionsbereich \(D_f\) einen grafischen Sprung. | Der Graph besitzt einen Knick. |
Du hättest jetzt noch gerne ein paar Übungsaufgaben? Na dann los!
Differenzierbarkeit Beispiele und Aufgaben
Wende nun Dein gelerntes Wissen an zwei Beispielen an.
Aufgabe 1
Begründe, weshalb die Funktion \(f(x)\) mit
\[f(x)=\left\{\begin{array}{ll} -3x&, & x\leq1\\x-2&, & x>1\end{array}\right.\]
nicht differenzierbar ist. Der Definitionsbereich der Funktion \(f(x)\) ist \(D_f=\mathbb{R}\).
Lösung
Schau Dir dafür zuerst das Schaubild der Funktion \(f(x)\) an.
Abb. 5 - Schaubild zur Aufgabe 1.
Es ist zu erkennen, dass die Funktion \(f(x)\) einen Sprung bei \(x_0=1\) macht und damit der Graph im Definitionsbereich \(D_f\) nicht ohne Unterbrechung ist. Dadurch lässt sich am Punkt \(x_0=1\) keine Tangente anlegen. Das bedeutet, dass die Funktion \(f(x)\) nicht stetig ist und damit auch nicht differenzierbar.
Aufgabe 2
Zeige mit Hilfe des Differentialquotienten, dass die Funktion \(f(x)\) mit \(f(x)=x^2+x-\pi\) differenzierbar ist.
Du kannst das \(\pi\) wie eine normale Konstante betrachten.
Lösung
Schau Dir wieder zuerst das Schaubild der Funktion \(f(x)\) an.
Abb. 6 - Schaubild zur Aufgabe 2.
Anhand des Schaubildes kann erahnt werden, dass die Funktion \(f(x)\) differenzierbar ist. Überprüfe dies nun mit Hilfe des Differentialquotienten.
\begin{align}f'(x_0)&=\lim \limits_{h \to 0} {\frac{f(x_0+h)-f(x_0)}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{(x_0+h)^2+(x_0+h)-\pi-({x_0}^2+x_0-\pi)}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{\cancel{{x_0}^2}+2 \cdot x_0 \cdot h+h^2 \cancel{+x_0}+h\cancel{-\pi}\cancel{-{x_0}^2}\cancel{-x_0}\cancel{+\pi}}{h}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} {\frac{2 \cdot x_0 \cancel{\cdot h}+h^\cancel{2}+\cancel{h}}{\cancel{h}}} \\[0.2cm]f'(x_0)&=\lim \limits_{h \to 0} 2 \cdot x_0 +h+1 \\[0.2cm]f'(x_0)&= 2 \cdot x_0 +1 \\\end{align}
Die Ableitung \(f'(x)\) der Funktion \(f(x)\) existiert uneingeschränkt. Damit ist die Funktion \(f(x)\) mit \(f(x)=x^2+x-\pi\) differenzierbar.
Differenzierbarkeit – Das Wichtigste
- An jeder Stelle \(x_0\) einer Funktion \(f(x)\), an der der beidseitige Grenzwert des Differenzenquotienten \( \lim \limits_{h \to 0} {\frac{f(x_0+h)-f(x_0)}{h}}\) existiert und gleich ist, ist die Funktion \(f(x)\) differenzierbar.
- Kurz: Eine Funktion \(f(x)\) ist genau dann an der Stelle \(x_0\) differenzierbar, wenn an dieser Stelle \(x_0\) eine Ableitung existiert.
- Als Faustregel kannst Du Dir merken, dass eine Stelle \(x_0\) genau dann differenzierbar ist, wenn Du auch genau eine eindeutig definierte Tangente anlegen kannst.
- Existiert bei einer Funktion \(f(x)\) an jeder beliebigen Stelle \(x_0\) in ihrem Definitionsbereich \(D_f\) eine Ableitung \(f'(x_0)\), so wird die Funktion \(f(x)\) differenzierbar genannt.
- Jede Funktion \(f(x)\), die differenzierbar ist, ist auch stetig. Die Umkehrung gilt jedoch nicht. Nur weil eine Funktion stetig ist, muss sie nicht differenzierbar sein.
- Grafische Beurteilung für NICHT Differenzierbarkeit
Nicht stetig und damit nicht differenzierbar | Stetig, aber nicht differenzierbar |
Der Graph besitzt an einer Stelle \(x_0\) im Definitionsbereich \(D_f\) einen grafischen Sprung. | Der Graph besitzt einen Knick. |
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen