Die Formel von Cardano kannst Du dazu nutzen, um die Nullstellen von kubischen Funktionen direkt berechnen zu können. Dabei benötigst Du keine Polynomdivision oder Ähnliches, sondern 4 andere Schritte.
Aufgabe 7
Löse die ganzrationale Funktion \(f(x) = 2x^3 +8x^2-2x-6\) mit der Formel von Cardano.
Lösung
Wie oben erwähnt, sind für die Formel von Cardano 4 Schritte notwendig.
1. Schritt: \(x^3\) muss alleine stehen.
\[\begin{align} 2x^3+8x^2-2x-6 &= 0 ~~~~~~~~ | :2 \\x^3+4x^2-x-3 &= 0 \end{align}\]
2. Schritt: Nötige Variablen definieren
Für die Formel von Cardano sind drei neue Variablen nötig, die sich aus den Koeffizienten einer kubischen Funktion, also einer \(x^3\)-Funktion, bilden lassen. Du benötigst die Variablen p,q und D. Außerdem benötigst Du für x noch eine Gleichung in Abhängigkeit der Variable z, welche noch unbekannt ist.
\[\begin{align} p &= b - \frac{(a^2)} {3} \\p &= -1 - \frac{4^2}{3} \\p &= -1 - \frac{16}{3} \\p &= -\frac{19}{3}\end{align}\]
\[\begin{align} q &= \frac{2 \cdot a^3}{27} - \frac{a \cdot b}{3} + c \\q &= \frac{2 \cdot 4^3}{27} - \frac{4 \cdot (-1)}{3} - 3 \\q &= \frac{128}{27} - \frac{-4}{3} -3 \\q &= \frac{83}{27} \end{align}\]
\[\begin{align} D &= \frac{q^2}{4} + \frac{p^3}{27} \\D &= \frac{(\frac{83}{27})^2}{4} + \frac{(-\frac{19}{3})^3}{27} \\D &= 2,36 - \frac{6859}{729} \\D &= -\frac{761}{108} \approx -7,05\end{align}\]
\[\begin{align} x = z - \frac{a}{3} \\x = z - \frac{4}{3}\end{align}\]
Damit hast Du alle nötigen Variablen berechnet und kannst mit dem dritten Schritt weitermachen.
3. Schritt: Fallunterscheidung für die Endberechnung
Bei der cardanischen Formel gibt es Fallunterscheidungen für D, falls es negativ oder positiv wird. In diesem Fall ist D negativ, also nimmst Du die Formel für das negative D. Mit dieser Formel hast Du für die drei reellen Lösungen drei verschiedene Formeln.
\[z_1 = \sqrt{-\frac{4\cdot p}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{q}{2} \cdot \sqrt{-\frac{27}{p^3}} \right) \right]\]
\[z_2 = -\sqrt{-\frac{4\cdot p}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{q}{2} \cdot \sqrt{-\frac{27}{p^3}} \right) + \frac{\pi}{3} \right]\]
\[z_3 = -\sqrt{-\frac{4\cdot p}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{q}{2} \cdot \sqrt{-\frac{27}{p^3}} \right) - \frac{\pi}{3} \right]\]
\[\begin{align} p &= -\frac{19}{3}\\q &= \frac{83}{27}\end{align}\]
\[z_1 = \sqrt{-\frac{4\cdot (-\frac{19}{3})}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{\frac{83}{27}}{2} \cdot \sqrt{-\frac{27}{(-\frac{19}{3})^3}} \right) \right] \approx 2,23\]
\[z_2 = -\sqrt{-\frac{4\cdot (-\frac{19}{3})}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{\frac{83}{27}}{2} \cdot \sqrt{-\frac{27}{(-\frac{19}{3})^3}} \right) + \frac{\pi}{3} \right] \approx 0,51\]
\[z_3 = -\sqrt{-\frac{4\cdot (-\frac{19}{3})}{3}} \cdot \cos \left[\frac{1}{3} \cdot arc\cos \left(-\frac{\frac{83}{27}}{2} \cdot \sqrt{-\frac{27}{(-\frac{19}{3})^3}} \right) - \frac{\pi}{3} \right] \approx -2,73\]
4. Schritt: x berechnen
Als letzten Schritt setzt Du die gerade errechneten z-Werte in die Gleichung \(x = z - \frac{4}{3}\) ein und findest damit x heraus.
\[\begin{align} x_1 &= z_1 - \frac{4}{3} \\&= 2,23 - \frac{4}{3} \approx 0,89\end{align}\]
\[\begin{align} x_2 &= z_2 - \frac{4}{3} \\&= 0,51 - \frac{4}{3} \approx -0,83\end{align}\]
\[\begin{align} x_3 &= z_3 - \frac{4}{3} \\&= -2,73 - \frac{4}{3} \approx -4,06\end{align}\]
Damit hast Du die drei Nullstellen der Funktion \(f(x) = 2x^3+8x^2-2x-6\) als \(x_1 = 0,89; ~~ x_2 = -0,83\) und \(x_3 = -4,06\) herausgefunden.