Kettenregel

Die Kettenregel ist eine der fundamentalen Ableitungsregeln in der Differentialrechnung. Mit ihr kannst Du verschachtelte Funktionen ableiten. In dieser Erklärung erfährst Du, ausführlich und anhand von Beispielen, wie Du die Kettenregel benutzt.

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Kettenregel Lehrer

  • 6 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 08.03.2023
  • 6 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 08.03.2023
  • 6 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für Ihr Interesse an den Lernpräferenzen!

Danke für dein Interesse an verschiedenen Lernmethoden! Welche Methode bevorzugst du? (z. B. „Audio“, „Video“, „Text“, „Keine Präferenz“) (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Kettenregel Ableitung bilden

Die Kettenregel ist ein Konzept der Differentialrechnung, das Dir ermöglicht, Ableitungen von komplexen verketteten Funktionen zu berechnen. Dabei wird die Ableitung einer äußeren Funktion mit der Ableitung einer inneren Funktion kombiniert.

Kettenregel Formel

Eine Funktion h(x), die aus einer äußeren Funktion f(x) und einer inneren g(x) besteht, heißt verkettet.h(x)=f(g(x))

Die Ableitung h(x) berechnet sich als die Ableitung der äußeren Funktion multipliziert mit der Ableitung der inneren Funktion.

h(x)=f(g(x))g(x)

Das Multiplizieren mit g(x) wird häufig auch als „nachdifferenzieren“ bezeichnet.

Kettenregel anwenden

Um die Kettenregel anzuwenden, musst Du zuerst die innere Funktion identifizieren und ihre Ableitung berechnen. Dann multiplizierst Du die Ableitung der inneren Funktion mit der Ableitung der äußeren Funktion, wobei Du die innere Funktion als Argument der äußeren Funktion verwendest.

  • Äußere Funktion f(x) bestimmen
  • Innere Funktion bestimmen g(x)
  • Ableiten der inneren und äußeren Funktion
  • Zusammensetzen nach h(x)=f(g(x))g(x)

Betrachte folgendes Beispiel:

Angenommen, Du hast die Funktion h(x)=sin(2x+3). Die äußere Funktion ist sin(x), während die innere Funktion 2x+3 ist.

Die Ableitung der inneren Funktion ist 2.

Die Ableitung der äußeren Funktion ist cos(x).

Dann lautet die Ableitung von h(x) mit der Kettenregel:

h(x)=f(g(x))f(x)=sin(x)f(x)=cos(x)g(x)=2x+3g(x)=2h(x)=f(g(x))g(x)h(x)=cos(2x+3)2

Kettenregel Beispiele

Die Kettenregel hilft Dir dabei, verschachtelte Funktionen abzuleiten. Diese Verschachtelung zu erkennen, ist eine reine Frage der Übung. Im Folgenden findest Du einige Beispiele.

h(x)f(x) & f'(x)g(x) & g'(x)h'(x)
h(x)=8(x3)3f(x)=8x3f(x)=24x2g(x)=x3g(x)=1h(x)=24(x3)21
h(x)=5(x32)4f(x)=5x4f(x)=20x3g(x)=x32g(x)=3x2h(x)=20(x32)33x2
h(x)=3e3x2f(x)=3exf(x)=3exg(x)=3x2g(x)=3h(x)=3e3x23

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Kettenregel

Kettenregel – Herleitung

Die Kettenregel kann direkt mithilfe der Definition des Differenzialquotienten und der h-Methode hergeleitet werden.

Der Differentialquotient ist eine Näherung für die Steigung einer Tangente in einem Punkt einer Funktion. Er ist gegeben als f(x)=limxx0f(x)f(x0)xx0

Die h-Methode entspricht einer Substitution des Terms mit h=xx0. Dadurch sieht der Funktionsterm wie folgt aus:f(x)=limh0f(x0+h)f(x0)h

Jetzt kann diese Gleichung auf beliebige Funktionen angewandt werden, um die Ableitung zu bestimmen. Der Differentialquotient einer verketteten Funktion h(x)=f(g(x)) ist gegeben durch;

h(x)=limh0f(g(x+h))f(g(x))h

Der Bruch kann jetzt erweitert werden.

h(x)=limh0f(g(x+h))f(g(x))hg(x+h)g(x)g(x+h)g(x)

Ein Umformen des Ausdrucks ergibt:

h(x)=limh0f(g(x+h))f(g(x))g(x+h)g(x)g(x+h)g(x)h=limh0f(g(x+h))f(g(x))g(x+h)g(x)limh0g(x+h)g(x)h=limh0f(g(x+h))f(g(x))g(x+h)g(x)g(x)=f(g(x))g(x)

Kettenregel – Aufgaben

Kettenregel Ableitung – Aufgabe 1

Gegeben ist die Funktion h(x)=(3x4)3. Bestimme die erste Ableitung h(x).

Lösung:

Identifiziere die innere und äußere Funktion der verketteten Funktion h(x)=(3x4)3.

Äußere Funktion f(x)=x3

Innere Funktion g(x)=3x4

Bestimme die jeweiligen Ableitungen: f(x)=3x2g(x)=3 Füge die Funktionen mit der Kettenregel zusammen h(x)=f(g(x))g(x): h(x)=3(3x4)23=9(3x4)2

Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen

Kostenlos registrieren
Kettenregel

Kettenregel Ableitung – Aufgabe 2

Gegeben ist die Funktion h(x)=2x23. Bestimme die erste Ableitung h(x).

Lösung:

Identifiziere die innere und äußere Funktion der verketteten Funktion h(x)=2x23.

Äußere Funktion f(x)=x

Innere Funktion g(x)=2x23

Bestimme die jeweiligen Ableitungen: f(x)=121xg(x)=4x Füge die Funktionen mit der Kettenregel zusammen h(x)=f(g(x))g(x): h(x)=1212x234x=2x2x23

Kettenregel Ableitung – Aufgabe 3

Gegeben ist die Funktion h(x)=e3x2. Bestimme die erste Ableitung h(x).

Lösung:

Identifiziere die innere und äußere Funktion der verketteten Funktion h(x)=e3x2.

Äußere Funktion f(x)=ex

Innere Funktion g(x)=3x2

Bestimme die jeweiligen Ableitungen: f(x)=exg(x)=6x Füge die Funktionen mit der Kettenregel zusammen h(x)=f(g(x))g(x): h(x)=e3x26x=6xe3x2

Kettenregel – Das Wichtigste auf einen Blick

  • Kettenregel-Ableitung: Die Ableitung einer Verkettung von zwei Funktionen h(x)=f(g(x)) lautet h(x)=f(g(x))g(x)
  • Schritte beim Ableiten mit der Kettenregel:
    1. Identifizieren der äußeren und inneren Funktion
    2. Berechnen der Ableitungen der äußeren und inneren Funktion
    3. Einsetzen der Ableitungen in die Kettenregel
  • Die Kettenregel kann direkt mithilfe des Differentialquotients hergeleitet werden.
Lerne schneller mit den 0 Karteikarten zu Kettenregel

Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

Kettenregel
Häufig gestellte Fragen zum Thema Kettenregel

Wann braucht man die Kettenregel? 

Man braucht die Kettenregel immer dann, wenn eine Funktion abgeleitet werden soll, die aus einer Verkettung zweier Funktionen f(x) und g(x) besteht.

Was ist Nachdifferenzieren? 

Das nachträgliche Multiplizieren mit g'(x) beim Anwenden der Kettenregel wird als Nachdifferenzieren bezeichnet.

Was sind Ableitungsregeln? 

Ableitungsregeln sind Hilfen beim Ableiten. Sie geben vor, wie bestimmte Funktionstypen abgeleitet werden.

Wie leitet man in der Klammer ab?  

Wenn eine Funktion in eine andere Funktion eingesetzt wird, muss mit der Kettenregel abgeleitet werden. Die Ableitung einer Verkettung von Funktionen wird gebildet, indem die äußere Funktion abgeleitet und mit der Ableitung der inneren Funktion multipliziert wird.

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Mathe Lehrer

  • 6 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren