Nullstellen berechnen

Mobile Features AB

\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Du kannst für eine Funktion, unabhängig, ob es lineare Funktionen, quadratische Funktionen oder Funktionen mit einer Wurzel sind, Nullstellen ermitteln. Sie sind auch oftmals Teil einer Kurvendiskussion. In dieser Erklärung erhältst Du einen Überblick, wie Du die Nullstellen einer Funktion berechnen kannst.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Nullstellen berechnen Lehrer

  • 8 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 06.04.2023
  • 8 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 06.04.2023
  • 8 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Nullstellen berechnen – Formeln & Übersicht

    Nullstellen findest Du immer, indem Du die Funktion mit null gleichsetzt und die Gleichung für x löst.

    FunktionstypNullstellen berechnen – Formeln
    Lineare Funktion
    • Ansatz \(f(x) = 0\)
    • Auflösen nach x
    Quadratische Funktion
    Ganzrationale Funktion 3. Grades oder höher
    e-Funktion
    • Ansatz \(f(x) = 0\)
    • Auflösen nach x durch Anwenden der ln-Funktion
    Wurzelfunktion
    • Ansatz \(f(x) = 0\)
    • Radikand 0 setzen

    Nullstellen berechnen – Ansatz

    Berührt oder schneidet eine Funktion an einer Stelle \(x_0\) die x-Achse, so gilt an dieser Stelle \(f(x_0)=0\). Die Stelle \(x_0\) nennt man dann auch Nullstelle.

    Um die Nullstellen einer Funktion zu finden, nutzt Du den Ansatz \[f(x) = 0\] oder auch \[y=0\]

    Nullstellen berechnen – Lineare Funktion

    Lineare Funktionen sind Funktionen der Form \(y = mx+t\). Der Graph einer linearen Funktion ist eine Gerade. Die Nullstelle dieser Gerade kann berechnet werden, indem die Funktion mit 0 gleichgesetzt wird. \[0=mx + t\]

    Vorgehen bei linearen Funktionen:

    • Gleichsetzen der Funktion mit 0
    • Auflösen nach x
    • Das Ergebnis für x ist die Nullstelle

    Nullstellen berechnen Nullstelle Lineare Funktion StudySmarterAbb. 1 - Nullstelle für lineare Funktion.

    Gesucht sind die Nullstellen der Funktion \(f(x)=2x-4\). Gleichsetzen mit 0 und auflösen nach x:

    \begin{align} 2x-4&=0\\2x&=4\\x&=2\end{align}

    Die Nullstelle lautet \(x=2\).

    Nullstellen berechnen – Quadratische Funktion (Parabel)

    Quadratische Funktionen haben die Form \(y= ax^2+bx +c\). Der Graph einer quadratischen Funktion ist eine Parabel Die Nullstellen einer quadratischen Funktion findest Du, indem Du die Funktion mit 0 gleichsetzt. Dadurch entsteht eine quadratische Gleichung \(ax^2+bx+c=0. Die Lösungen dieser Gleichung sind die Nullstellen der Funktion.

    Die Gleichung kannst Du mit der Mitternachtsformel lösen.

    \[\text{Mitternachtsformel:}\quad x_{1/2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]

    Die Nullstellen der Funktion \(f(x)=x^2-x-12\).

    Gleichsetzen mit 0:

    \[0=x^2-x-12\]

    Anwenden der Mitternachtsformel mit a=1, b=-1 und c = -12:

    \begin{align}x_{1/2}&=\frac{1\pm\sqrt{1^2-4\cdot 1\cdot (-12)}}{2\cdot 1}\\&=\frac{1\pm\sqrt{49}}{2}\\&=\frac{1\pm 7}{2}\\\\x_1&=4\\x_2&=-3\end{align}

    Nullstellen berechnen – pq-Formel

    Die pq-Formel ist eine Methode zur Berechnung von Nullstellen quadratischer Gleichungen der Form \(x^2+px+q=0\)

    Die pq-Formel lautet:

    \[x_{1/2}=-\frac{p}{2}\pm{\sqrt{\left(\frac{p}{2}\right)^2-q}}\]

    Anwenden der pq-Formel:

    1. Schreibe die quadratische Gleichung in die Form \(x^2+px+q=0\)
    2. Setze p und q in die Formel ein
    3. Berechne einmal mit „+“ und einmal mit „-“ für Deine zwei Lösungen

    Die Nullstellen der Funktion \(f(x)= x^2-x-12\) sollen mit der pq-Formel bestimmt werden.

    Gleichsetzen mit 0:

    \[0=x^2-x-12\]

    Bestimmen von p und q: \[p=-1\]\[q=-12\]

    Einsetzen in die Formel:

    \begin{align} x_{1/2}&=-\frac{(-1)}{2}\pm\sqrt{\left(\frac{-1}{2}\right)^2-(-12)}\\&=\frac{1}{2}\pm\sqrt{\frac{1}{4}+12}\\&=\frac{1}{2}\pm\sqrt{\frac{49}{4}}\\&=\frac{1}{2}\pm\frac{7}{2}\\\\x_1&=4\\x_2&=-3\end{align}

    Nullstellen berechnen – Funktion 3. Grades

    Die Nullstellen einer ganzrationalen Funktion mit Grad 3 oder höher ist im Allgemeinen mit der Polynomdivision möglich. Eine ganzrationale Funktion n-ten Grades hat die Form:\[f(x)=a_nx^n+ a_{n-1}x^{n-1}+\dots+a_0\]

    Die Polynomdivision läuft wie folgt ab:

    • Finde eine Nullstelle \(x_0\) durch Ausprobieren
    • Teile Deinen Term durch \((x-x_0)\)
    • Wiederhole die Prozedur mit dem Ergebnisterm
    • Alle Nullstellen, die Du so findest, sind Nullstellen Deines Ausgangspolynoms

    Gegen ist die nachfolgende Funktion. Löse hierbei durch Polynomdivision.

    \[f(x)=x^3-x^2-4x+4\]

    Du kannst durch Ausprobieren herausfinden, dass für x = 2 die Gleichung zu 0 evaluiert.

    \begin{align} 2^3-2^2-4\cdot2+4&=\\8-4-4\cdot 2+4&=\\4-8+&=0 (w)\end{align}

    Damit kannst Du die Funktion durch diese Nullstelle teilen:

    \begin{array}{ccc}(x^3-x^2&-4x&+4&):(x-2)=x^2+x-2\\-(x^3-2x^2)\\\hline\\x^2&-4x&+4&\\-(x^2&-2x)\\\hline\\ &(-2x&+4)&\\&-(-2x&+4)&\\\hline & & 0&\end{array}

    Im nächsten Schritt kannst Du das erhaltene Ergebnis als quadratische Funktion auffassen und die Nullstellen über die pq-Formel oder Mitternachtsformel ermitteln.

    \begin{align}x_{1/2}&=\frac{-1\pm\sqrt{1^2-4\cdot1\cdot(-2)}}{2\cdot 1}\\&=\frac{-1\pm\sqrt{9}}{2}\\x_1&=1\\x_2&=-2\end{align}

    Ergebnis für NS: -2, 1, 2

    Weitere Informationen findest Du in der Erklärung Polynomdivision und unter Nullstellen ganzrationaler Funktionen / Polynomfunktionen berechnen. Allgemeineres zu den Ganzrationalen Funktionen, auch mit höheren Graden, erfährst Du unter Ganzrationale Funktionen.

    Nullstellen berechnen – weitere Beispiele

    Auch andere Funktionen haben Nullstellen, für die Du auch noch anderes Wissen benötigst, zum Beispiel über e-Funktionen.

    Nullstellen berechnen – e-Funktion

    Die e-Funktion allein besitzt keine Nullstellen, da sie entweder positiv oder negativ an die x-Achse herangeht, die x-Achse ist also eine Grenze, die nie überschritten wird. Somit kann es nur Nullstellen geben, wenn die e-Funktion zusätzlich mit einem Faktor verknüpft ist.

    Die Umkehrfunktion der e-Funktion hat dagegen eine Nullstelle. Dieser natürliche Logarithmus wird nur für die Zahl 1 zu Null.

    Die Nullstelle für den natürlichen Logarithmus ist wie folgt:

    \[ln(1)=0\]

    Die Nullstellen einer e-Funktion sind die Nullstellen des jeweiligen Produktes mit der e-Funktion.

    Nullstellen berechnen – Wurzelfunktion

    Der Wert einer Wurzel ist null, wenn der Radikand (der Wert unter der Wurzel) null ist.

    Bestimme die Nullstelle zu folgender Wurzelfunktion:

    \[f(x)=\sqrt{3x-6}\]

    Um die Nullstelle zu berechnen, nimmst Du nur den Radikand, also den Term unterhalb der Wurzel und setzt ihn gleich 0.

    \begin{align} 3x-6&=0\\3x&=6\\x &= 2\end{align}

    Die Nullstelle befindet sich also am x-Wert 2.

    Nullstellen berechnen Nullstellen für Wurzelfunktion StudySmarterAbbildung 8: Nullstelle für Wurzelfunktion

    Nullstellen berechnen – Aufgaben

    Nullstellen berechnen – Aufgabe 1

    Im Folgenden sind Dir eine lineare und eine quadratische Funktion gegeben. Berechne hierzu die Nullstellen.

    a) \(f(x) = \frac{1}{2}x+4\)

    b) \(g(x)=x^2+4x+3\)

    Lösung

    a)

    Schau Dir zuerst die erste Funktion an. Dabei setzt Du immer diese Funktionen gleich 0. Also gehe zum Beispiel wie folgt vor:

    \begin{align}\frac{1}{2}x+4&=0\\\frac{1}{2}x&=-4\\x&=-8\end{align}

    Das bedeutet, die Nullstelle befindet sich bei -8.

    b)

    Für die zweite Funktion kannst Du sofort die pq-Formel anwenden, da es keinen Faktor a vor \(x^2\) gibt.

    \begin{align}x_{1/2}&=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}\\&=-2\pm\sqrt{4-3}\\&=-2\pm 1 \\x_1&=-3\\x_2&=-1\end{align}

    Die Nullstellen befinden sich bei den x-Werten -1 und -3.

    Nullstellen berechnen – Aufgabe 2

    Berechne die Nullstellen zu folgenden Funktionen:

    a) \(f(x) =2x^3+5x^2+2x\)

    b) \(g(x) = \sqrt{2x+5}\)

    Lösung

    a)

    In diesem Fall kannst Du zuvor ausklammern, wobei Du dann einen Faktor und eine quadratische Funktion als zweiten Faktor hast, die Du dann durch die pq-Formel oder Mitternachtsformel lösen kannst.

    \begin{align}0&=2x^3+5x^2+2x\\0&=2x(x^2+2{,}5x+1)\end{align}

    Der erste Faktor wird 0, wenn der x-Wert gleich 0 ist. Das ist bereits die erste NS.

    Nun kannst Du die Mitternachtsformel anwenden.

    \begin{align}x_{1/2}&=\frac{-2{,}5\pm\sqrt{2{,}5^2-4\cdot 1\cdot 1}}{2\cdot 1}\\&=\frac{-2{,}5\pm \sqrt{2{,}25}}{2}\\x_2&=-0{,}5\\x_3&=-2\end{align}

    Insgesamt gibt es also Nullstellen bei den x-Werten -2; -0,5; 0.

    b)

    Für die zweite Funktion siehst Du Dir nur den Radikand unterhalb der Wurzel an und setzt ihn gleich 0.

    \begin{align} 2x+5&=0\\2x&=-5\\x&=-\frac{5}{2}\end{align}

    Die Nullstelle befindet sich also bei \(-\frac{5}{2}\).

    Nullstellen berechnen – Das Wichtigste auf einen Blick

    • Nullstellen für eine Funktion sind die Punkte, an dem die Funktion die x-Achse schneidet. Es gilt also \(f(x)=0\).
    • Nullstellen berechnest Du, indem Du die Funktion gleich 0 setzt.
    • Bei Parabeln, bzw. quadratischen Funktionen benötigst Du oftmals die Mitternachtsformel oder die pq-Formel zum Lösen.
    • Bei Ganzrationalen Funktionen vom Grad 3 und höher benötigst Du andere Methoden, zum Beispiel die Polynomdivision.
    Lerne schneller mit den 0 Karteikarten zu Nullstellen berechnen

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Nullstellen berechnen
    Häufig gestellte Fragen zum Thema Nullstellen berechnen

    Wie bestimmt man Nullstellen rechnerisch? 

    Wenn Du die Nullstelle/n einer Funktion f berechnen möchtest, setzt Du die Funktion gleich 0. Für eine lineare Funktion kannst Du gleich die Äquivalenzumformungen verwenden, für eine quadratische Funktion ist aber oftmals die Mitternachtsformel bzw. pq-Formel zu verwenden. Für Funktionen höheren Grades ist häufig auch das Wissen über Polynomdivisionen oder auch das Ausklammern entscheidend.

    Wie berechnet man die Nullstellen einer quadratischen Funktion? 

    Die Nullstellen einer quadratischen Funktion erhältst Du über die Mitternachtsformel, falls eine Funktion in der allgemeinen Form angegeben ist. Das bedeutet, die Funktion besitzt noch ein a. Für Funktionen, die keinen Faktor a besitzen, es handelt sich also um eine Normalform, kannst Du die pq-Formel verwenden.

    Wie berechne ich die Nullstellen einer Funktion 3. Grades? 

    Nullstellen einer Funktion 3. Grades berechnest Du, indem Du ein x ausklammerst. Damit erhältst Du bereits die Nullstelle für x = 0. Danach kannst Du die Mitternachts- oder pq-Formel verwenden. Manchmal ist allerdings eine Polynomdivision zu nutzen. Für eine Funktion 4. Grades ist oftmals auch eine Substitution sehr hilfreich.

    Was sind die Nullstellen einer Funktion? 

    Die Nullstellen einer Funktion beschreiben die Schnittpunkte eines Graphen mit der x-Achse, wobei der y-Wert Null ist. Dabei kann es sich bei diesen Nullstellen um Schnittpunkte handeln, oder auch Berührpunkte, falls die Funktion die x-Achse nur berührt. Sie bleibt also im Positiven oder Negativen.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 8 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren