Trigonometrische Funktionen

Die trigonometrischen Funktionen spielen eine zentrale Rolle in der Analysis. Da es sich um periodische Funktionen handelt, haben sie eine besondere Bedeutung. Deshalb lohnt es sich, diese Funktionen ausführlich anzuschauen, um bei Bedarf darauf zurückgreifen zu können.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Brauchst du Hilfe?
Lerne unseren AI-Assistenten kennen!

Upload Icon

Erstelle automatisch Karteikarten aus deinen Dokumenten.

   Dokument hochladen
Upload Dots

FC Phone Screen

Brauchst du Hilfe mit
Trigonometrische Funktionen?
Frage unseren AI-Assistenten

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Trigonometrische Funktionen Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Die trigonometrischen Funktionen finden sowohl in der Schulmathematik, als auch in vielen anderen naturwissenschaftlichen Bereichen Anwendung.

    Trigonometrischen Funktionen Übersicht

    Die trigonometrischen Funktionen bestehen aus der Sinus-, der Kosinus- und der Tangensfunktion.

    Es handelt sich bei allen drei Funktionen um periodische Funktionen. Das bedeutet, dass sich nach einer Periode derselbe wiederholt und das immer und immer wieder.

    Du bekommst hier einen groben Überblick über die drei trigonometrischen Funktionen mit ihren wichtigsten Eigenschaften. Wenn du mehr zu einer bestimmten Funktion erfahren möchtest, lies dir unsere Artikel Sinusfunktion, Kosinusfunktion und Tangensfunktion durch.

    Trigonometrische Funktionen Formeln

    Zuerst kannst du dir die Funktionsgleichungen der drei trigonometrischen Funktionen anschauen.

    SinusfunktionKosinusfunktionTangensfunktion

    Dabei fällt auf, dass die Tangensfunktion von der Sinus- und Kosinusfunktion abhängt.

    Dies führt allerdings auch dazu, dass die Tangensfunktion Definitionslücken besitzt - nämlich genau an den Nullstellen der Kosinusfunktion, da in diesem Fall durch null geteilt werden würde.

    Trigonometrische Funktionen Schaubilder

    Als nächstes kannst du dir die Schaubilder der trigonometrischen Funktionen anschauen.

    FunktionSchaubild
    Sinus

    Trigonometrische Funktionen Sinusfunktion StudySmarterAbbildung 1: Schaubild der Sinusfunktion

    Kosinus

    Trigonometrische Funktionen Kosinusfunktion StudySmarterAbbildung 2: Schaubild der Kosinusfunktion

    Tangens

    Trigonometrische Funktionen Tangens StudySmarterAbbildung 3: Schaubild der Tangensfunktion

    Bei den Schaubilder fällt dir vielleicht auf, dass die Sinus- und die Kosinusfunktion sehr ähnlich aussehen. Das kommt daher, dass die Kosinusfunktion lediglich durch eine Verschiebung um nach links durch die Sinusfunktion entsteht.

    Die Kosinusfunktion wird trotz der Ähnlichkeit zur Sinusfunktion gesondert betrachtet, da es manchmal in praktischen Anwendungen einfacher ist, die Kosinusfunktion statt der Sinusfunktion zu nutzen.

    Trigonometrischen Funktionen Wertebereich

    Der Wertebereich der trigonometrischen Funktionen gibt an, welche maximalen und minimalen die Funktionen annehmen können.

    SinusfunktionKosinusfunktionTangensfunktion

    Wie du siehst, deckt sich der Wertebereich der Sinusfunktion mit dem der Kosinusfunktion. In beiden Fällen werden die nie größer als und nie kleiner als .

    Lediglich der Wertebereich der Tangensfunktion ist ein anderer. Bei der Tangensfunktion laufen die im Bereich gegen und im Bereich gegen . Damit entsteht der Wertebereich der Tangensfunktion.

    Trigonometrische Funktionen Periode

    Wie bereits am Anfang des Artikels erwähnt, handelt es sich bei allen drei trigonometrischen Funktionen um periodische Funktionen. Das bedeutet, dass sich ihre in bestimmten Abschnitten immer wiederholen. Diese Periode wird mit dem Buchstaben gekennzeichnet.

    SinusfunktionKosinusfunktionTangensfunktion

    Wie du siehst, beträgt die Periode der Sinus- und Kosinusfunktion und die derTangensfunktion .

    Das heißt also, dass sich die Schaubilder der drei trigonometrischen Funktionen immer wiederholen.

    Da die Sinus- und die Kosinusfunktion eine Periode von besitzen, musst du dir das Ganze so vorstellen, dass die Funktionen zwischen und genau so aussehen wie zwischen und oder zwischen und . Das kannst du noch beliebig so weiter machen. Die beiden Funktionen sehen dann zwischen und wieder genau so aus.

    Trigonometrische Funktionen Nullstellen

    Die Nullstellen der trigonometrischen Funktionen sind wie bei allen anderen Funktionen auch die der Schnittpunkte der trigonometrischen Funktion mit der .

    Die Besonderheit hier ist, dass sich diese aufgrund der Periodizität nach einer halben Periode wiederholen. Die trigonometrischen Funktionen besitzen damit unendlich viele Nullstellen.

    Damit kannst du auch eine allgemeine Formel aufstellen, um jede beliebige Nullstelle herauszufinden. Dabei ist eine ganze Zahl.

    SinusfunktionKosinusfunktionTangensfunktion

    Wie du sehen kannst, besitzt die Tangensfunktion dieselben Nullstellen wie die Sinusfunktion. Das verdankt die Tangensfunktion ihrer Definition .

    Trigonometrische Funktionen ableiten

    Als nächstes kannst du die Ableitung der trigonometrischen Funktionen betrachten.

    SinusfunktionKosinusfunktionTangensfunktion

    Wie du sehen kannst, hängen auch die Ableitung der Sinus- und Kosinusfunktion miteinander zusammen.

    Die Ableitung der Tangensfunktion entsteht durch Anwenden der Ableitungsregeln auf die Definition der Tangensfunktion .

    Trigonometrische Funktionen Parameter

    Manchmal brauchst du veränderte trigonometrische Funktionen, weil sie dir in der reinen Form oder nichts bringen.

    Dann tauchen plötzlich Parameter auf. Das sind Zahlen, die zum Beispiel an Funktionsgleichungen multipliziert oder addiert werden, um so die Funktion ein wenig zu verändern. Eine leicht veränderte Funktionsgleichung sieht dann vielleicht so aus: .

    Die Sinus- und Kosinusfunktion können allgemein wie folgt mit den Parametern verändert werden.

    SinusfunktionKosinusfunktion

    Auf die Tangensfunktion wird an dieser Stelle verzichtet. Aufgrund der Definitionslücken wird der Tangens in der Schule nur in seiner reinen Form betrachtet.

    Die Parameter , , und sind reelle Zahlen. Zudem dürfen die Parameter und nicht null sein, denn sonst würden keine trigonometrischen Gleichungen mehr vorliegen.

    Einen kurzen Überblick über die Auswirkungen der Parameter findest du in der nachfolgenden Tabelle.

    ParameterAuswirkung
    aStreckung in mit dem Faktor Wenn : Der Graph wird zusätzlich an der gespiegelt.
    bStreckung in mit dem Faktor Wenn : Der Graph wird zusätzlich an der gespiegelt.
    cVerschiebung in um .
    dVerschiebung in um .

    Wenn du gerne noch mehr zu den Parametern der Sinusfunktion oder Kosinusfunktion wissen möchtest, schau dir unseren Artikel "Trigonometrische Funktionen Parameter" an.

    Trigonometrische Funktionen Bogenmaß

    Das Bogenmaß ist die Länge eines Kreisbogens mit dem Radius . Für das Verhältnis zwischen Winkel und Bogenmaß kannst du dir die nächste Definition anschauen.

    Zu jedem Bogenmaß gehört auch ein Winkel . Die Beziehung zwischen dem Kreisbogen und dem Winkel lässt sich für den Radius wie folgt aufstellen.

    Das Ganze kannst du dir auch noch einmal in der Abbildung 4 am Einheitskreis verdeutlichen.

    Da sich das Ganze auf die Sinus- und Kosinusfunktion bezieht, wird hier statt der Bezeichnung b für den Kreisbogen die Variable x gewählt.

    Trigonometrische Funktionen Einheitskreis StudySmarterAbbildung 4: Einheitskreis

    Mit der Formel kannst du das dir bekannte Gradmaß ins Bogenmaß umrechnen und umgekehrt.

    Mehr zu dem Thema kannst du im Artikel Bogenmaß nachlesen. Hilfreich kann auch der Artikel Einheitskreis sein.

    Bogenmaß Tabelle

    Um dir noch einen kurzen Überblick über das Grad- und Bogenmaß zu verschaffen, kannst du dir die folgende Tabelle anschauen.

    Auch mit dabei sind in der Tabelle die wichtigsten Werte der Sinus- und Kosinusfunktion.

    Winkel30°45°60°90°180°270°360°
    Bogenmaß

    Super, jetzt weißt du schon eine ganze Menge über die trigonometrischen Funktionen. Als Zusammenfassung kannst du dir noch kurz den nächsten Überblick anschauen.

    Trigonometrische Funktionen Das Wichtigste

    • Die Formeln der trigonometrischen Gleichungen lauten wie folgt:
      • Sinusfunktion:
      • Kosinusfunktion:
      • Tangensfunktion:
    • Der Wertebereich der trigonometrischen Funktionen sieht wie folgt aus:
      • Sinus- und Kosinusfunktion:
      • Tangensfunktion:
    • Die trigonometrischen Funktionen haben folgende Periode:
      • Sinus- und Kosinusfunktion:
      • Tangensfunktion:
    • Die Nullstellen der trigonometrischen Funktionen lauten folgendermaßen:
      • Sinus- und Tangensfunktion:
      • Kosinusfunktion:
    • Folgende Ableitungen besitzen die trigonometrischen Funktionen:
      • Sinusfunktion:
      • Kosinusfunktion:
      • Tangensfunktion:
    • Es gibt erweiterte trigonometrische Funktionen mit Parametern. Diese Darstellung sieht wie folgt aus:
      • Sinusfunktion:
      • Kosinusfunktion:
      • Die Parameter haben folgende Auswirkungen auf die reinen trigonometrischen Funktionen:
        ParameterAuswirkung
        aStreckung in mit dem Faktor Wenn : Der Graph wird zusätzlich an der gespiegelt.
        bStreckung in mit dem Faktor Wenn : Der Graph wird zusätzlich an der gespiegelt.
        cVerschiebung in um
        dVerschiebung in um
    • Das Bogenmaß ist die Länge eines Kreisbogens mit dem Radius .
    • Mit folgender Formel lässt sich das Bogenmaß ins Winkelmaß umrechnen und umgekehrt:
    Trigonometrische Funktionen Trigonometrische Funktionen
    Lerne mit 0 Trigonometrische Funktionen Karteikarten in der kostenlosen StudySmarter App
    Mit E-Mail registrieren

    Du hast bereits ein Konto? Anmelden

    Häufig gestellte Fragen zum Thema Trigonometrische Funktionen

    Was ist k bei trigonometrischen Funktionen?

    Mit Hilfe des k können mehrere Nullstellen, Extremstellen etc. berechnet werden. Wenn zum Beispiel die Nullstellen der Sinusfunktion mit x_k = k*Pi angegeben ist, bedeuetet das, dass für eine ganze Zahl k an jeder Stelle eine Nullstelle existiert. Zum Beispiel x_0=0, x_1=Pi,...

    Wie berechnet man die Nullstellen einer trigonometrischen Funktion?

    Die Funktion gleich 0 setzen und nach x umformen.

    Was gehört alles zur Trigonometrie?

    Die Trigonometrie befasst sich hauptsächlich mit Dreiecken. Dabei spielen die Winkel und Seiten eine wichtige Rolle. Dier können unter anderem mit dem Sinus, Kosinus und Tangens berechnet werden.
    Mit Hilfe des Einheitskreises können aus dem Sinus, dem Kosinus und dem Tangens auch Funktionen erstellt werden.

    Was beschreiben trigonometrische Funktionen?

    Trigonometrische Funktionen beschreiben eine wellenförmige Schwingung.

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 7 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren