Archimedes Pi

Mobile Features AB

Was verbindest Du mit der Zahl \(3{,}14?\) – Richtig, es handelt sich dabei um die Kreiszahl Pi bzw. genau genommen nur um die ersten Stellen von Pi. In der Antike gelang es dem griechischen Mathematiker Archimedes, Pi mit einem Näherungsverfahren genau auf diese zwei Nachkommastellen hin zu berechnen. Wie diese Herleitung von der Zahl Pi nach Archimedes funktioniert, erfährst Du hier.

Los geht’s

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Archimedes Pi Lehrer

  • 9 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 30.11.2022
  • 9 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 30.11.2022
  • 9 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Archimedes Pi – die Zahl Pi

    Bei der Zahl Pi \((\pi)\) handelt es sich um eine irrationale Zahl. Das bedeutet, sie hat unendlich viele Nachkommastellen.

    \[\pi=3{,}1415926{...}\]

    Es ist somit unmöglich, \(\pi\) auf jede Nachkommastelle genau zu bestimmen. Mittlerweile sind etwa 82 Billionen Nachkommastellen berechnet worden.

    Die Zahl Pi wird auch Kreiszahl genannt, da sie dem Verhältnis aus dem Umfang \(U\) eines Kreises und dessen Durchmesser \(d\) entspricht:

    \[\pi=\frac{U}{d}\]

    Dieser geometrische Zusammenhang war bereits Archimedes bekannt, woraufhin er im 3. Jahrhundert v. Chr. das Pi mit einem bestimmten Verfahren annähernd bestimmen konnte.

    Archimedes Pi – Näherungsverfahren

    Der griechische Mathematiker Archimedes gilt als der Entdecker der Zahl \(\pi\). Im Jahr 250 v. Chr. konnte er mit einem Näherungsverfahren die Kreiszahl auf 2 Nachkommastellen genau bestimmen. Wie ist er dabei vorgegangen?

    Archimedes zeichnete dafür einen Einheitskreis, also einen Kreis mit einem Radius von \(r=1\) bzw. einem Durchmesser von \(d=2\).

    In einem Einheitskreis entspricht Pi exakt dem halben Umfang \(U\) des Kreises.

    \[\pi=\frac{U}{2}\]

    Innerhalb und außerhalb dieses Kreises zeichnete Archimedes nun jeweils ein regelmäßiges Sechseck, dessen Umfang er berechnen konnte.

    Archimedes Pi Näherungsverfahren Sechsecke StudySmarterAbb. 1 - Näherungsverfahren von Pi über Sechsecke.

    Der Umfang \(U\) des Kreises ist damit größer als der Umfang des inneren Sechsecks, aber kleiner als der des äußeren Sechsecks. Dadurch, dass im Einheitskreis \(\pi=\frac{U}{2}\) gilt, konnte Archimedes diesen Zusammenhang entsprechend auch auf die Sechsecke anwenden und damit eine Unter- und Obergrenze von \(\pi\) ermitteln.

    \begin{align}\frac {U_\text{inneres Sechseck}}{2} < \, &\pi < \frac {U_\text{äußeres Sechseck}}{2}\\[0.15cm]3 < \, &\pi < 3.464101615\end{align}

    Um sich der Zahl \(\pi\) weiter anzunähern, teilte Archimedes nun die Seiten der Sechsecke zu einem Zwölfeck, dann zu einem 24-Eck, bis hin zu einem 96-Eck.

    Auf diese Weise konnte er folgende Grenzen von \(\pi\) bestimmen:

    \[3{,}1408450 < \pi <3{,}1428571\]

    Aber wie hat Archimedes den Umfang der Vielecke jetzt konkret berechnet?

    Archimedes Pi – Berechnung

    Für die konkrete Herleitung von der Kreiszahl Pi nach Archimedes wird zunächst der Umfang des Vieleckes, welches im Einheitskreis eingeschlossen ist, für die untere Grenze von Pi berechnet. Anschließend wird damit dann der Umfang des umschließenden Vieleckes für die obere Grenze von Pi bestimmt.

    Kreiszahl Pi Herleitung Archimedes – untere Grenze

    Um eine erste untere Grenze von Pi zu bestimmen, kannst Du zunächst das im Einheitskreis eingeschlossene, regelmäßige Sechseck betrachten. Das Sechseck kannst Du dabei in sechs gleichseitige Dreiecke mit einer jeweiligen Seitenlänge von 1 unterteilen.

    Archimedes Pi Berechnung Umfang Sechseck StudySmarterAbb. 2 - Regelmäßiges Sechseck im Einheitskreis.

    Der Umfang des Sechsecks ergibt sich aus der Addition der Seiten, welche jeweils eine Länge von 1 haben:

    \[U_{Sechseck} = 6\cdot 1 = 6 \]

    Da Pi im Einheitskreis dem halben Umfang des Kreises entspricht, ergibt sich daraus der folgende Term für die erste Annäherung von Pi:

    \begin{align}\pi&\approx\frac{U_{Sechseck}}{2}\\[0.2cm]\pi&\approx\frac{6}{2} \approx3\end{align}

    Um eine genauere Untergrenze von Pi zu bestimmen, werden die Seiten des Sechsecks jetzt halbiert, sodass ein 12-Eck entsteht.

    Archimedes Pi Berechnung Umfang 12-Eck StudySmarterAbb. 3 - Regelmäßiges 12-Eck im Einheitskreis.

    Wie Du siehst, ist die freie Fläche zwischen der Kreislinie und dem 12-Eck schon deutlich geringer als die Fläche zwischen Kreislinie und Sechseck. Der Umfang der Vielecke nähert sich also mit jeder weiteren Ecke dem Umfang des Kreises an.

    Da alle Seiten des 12-Ecks gleich lang sind, genügt es, die Länge \(x\) von nur einer Seite zu bestimmen. Archimedes betrachtete dazu also folgendes Dreieck aus dem 12-Eck.

    Archimedes Pi Berechnung Umfang 12-Eck StudySmarterAbb. 4 - Ausschnitt aus dem 12-Eck im Einheitskreis.

    Um die Seitenlänge \(x\) zu bestimmen, teilst Du das Dreieck in zwei rechtwinklige Dreiecke, von denen jeweils der Radius \(1\) und die halbe Seitenlänge des Sechsecks mit \(0{,}5\) bekannt sind.

    Archimedes Pi Berechnung Umfang 12-Eck StudySmarterAbb. 5 - Rechtwinklige Dreiecke aus dem 12-Eck.

    Die Länge der Kathete \(y\) kannst Du mit dem Satz des Pythagoras berechnen.

    \begin{align}\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 200} {\color{gr}y}^2+{\color{gr}0{,}5}^2&={\color{bl}1}^2 &&|-0{,}5^2\\y^2&=1^2-0{,}5^2&&|\sqrt{\,}\\y&=\sqrt{1^2-0{,}5^2}\\y&\approx0{,}866025\end{align}

    Die Kathete \(z\) entspricht der Differenz aus dem Radius und der Kathete \(y\).

    \begin{align}\color{r}z&={\color{bl}1}-{\color{gr}y}\\z&={\color{bl}1}-{\color{gr}0{,}866025} \\z&\approx 0{,}133975 \end{align}

    Zusammen mit der Länge \(z\) und der bekannten Länge \(0{,}5\) der anderen Kathete kannst Du nun die Seitenlänge \(x\) von dem 12-Eck mit dem Satz des Pythagoras berechnen.

    \begin{align}{\color{r}z}^2+{\color{gr}0{,}5}^2&={\color{r}x}^2\\{\color{r}0{,}133975}^2+{\color{gr}0{,}5}^2&={\color{r}x}^2 &&|\sqrt{\,}\\\sqrt{0{,}133975^2+0{,}5^2}&=x\\0{,}517638&\approx x\end{align}

    Um den Umfang des 12-Ecks zu bestimmen, muss die Seitenlänge \(x\) jetzt nur noch verzwölffacht werden.

    \begin{align}U_{12-Eck}&=12\cdot 0{,}517638\\&=6{,}211656\end{align}

    Mit diesem Umfang kannst Du \(\pi\) jetzt wieder weiter annähern.

    \begin{align}\pi&\approx\frac{U_{12-Eck}}{2}\\[0.2cm]\pi&\approx\frac{6{,}211656}{2}\\[0.2cm]&\approx3{,}105828\end{align}

    Um die untere Grenze von Pi genauer zu bestimmen, wiederholst Du dieses Verfahren jetzt wieder. Das heißt, Du teilst das 12-Eck regelmäßig in ein 24-Eck auf und kannst dann mit dem Satz des Pythagoras die Seitenlänge und damit auch den Umfang des 24-Ecks berechnen.

    Kreiszahl Pi Herleitung Archimedes – obere Grenze

    Die obere Grenze von Pi wird nach Archimedes über den Umfang der Vielecke hergeleitet, welche den Einheitskreis umschließen. Zusammen mit dem bereits berechneten Umfang des innenliegenden Vieleckes und dem Strahlensatz wird der Umfang des äußeren Vieleckes berechnet.

    Betrachte dazu den Einheitskreis mit dem eingeschlossenen und dem umliegenden Sechseck. Das äußere Sechseck lässt sich gleichmäßig in sechs Dreiecke unterteilen.

    Archimedes Pi Berechnung Umfang äußeres Sechseck StudySmarterAbb. 6 - Einheitskreis, mit eingeschlossenem und umschließendem Sechseck.

    Um den Umfang des äußeren Sechsecks zu ermitteln, genügt es, eine Seitenlänge \(x\) zu bestimmen und diese anschließend zu versechsfachen. Da der Umfang bzw. die entsprechende Seite des inneren Sechsecks bereits bekannt ist, kannst Du hierbei den 2. Strahlensatz anwenden.

    Du bist Dir bei dem Thema nicht mehr ganz sicher? Dann schau in die Erklärung "Zweiter Strahlensatz". Dort erfährst Du, wie er angewandt wird.

    Archimedes Pi Berechnung Umfang äußeres Sechseck Strahlensatz StudySmarterAbb. 7 - Berechnung einer Seitenlänge x im äußeren Sechseck mit Strahlensatz.

    Nach dem zweiten Strahlensatz ergibt sich folgende Gleichung:

    \[\frac{{\color{r}x}}{{\color{gr}1}}=\frac{{\color{li}1}}{{\color{bl}y}}\]

    Die noch unbekannte Länge \(y\) kannst Du mit dem Satz des Pythagoras berechnen.

    \begin{align}{\color{bl}y}^2+{\color{gr}0{,}5}^2&={\color{r}1}^2 &&|-0{,}5^2\\y^2&=1^2-0{,}5^2&&|\sqrt{\,}\\y&=\sqrt{1^2-0{,}5^2}\\y&\approx0{,}866025\end{align}

    Somit gilt für die Seitenlänge \(x\) Folgendes:

    \begin{align}\frac{{\color{r}x}}{{\color{gr}1}}&=\frac{{\color{li}1}}{{\color{bl}y}}\\{\color{r}x}&=\frac{{\color{li}1}}{{\color{bl}0{,}866025}}\\[0.2cm]& \approx 1{,}15470107 \end{align}

    Um den Umfang des äußeren Sechsecks zu berechnen, muss die Seitenlänge \(x\) jetzt noch versechsfacht werden.

    \begin{align}U_{Sechseck}&\approx 6\cdot 1{,}15470107 \\U_{Sechseck}&\approx 6{,}928\end{align}

    Da Pi im Einheitskreis dem halben Umfang des Kreises entspricht, ergibt sich daraus der folgende Term für die erste Annäherung der oberen Grenze für Pi:

    \begin{align}\pi&\approx\frac{U_{Sechseck}}{2}\\[0.2cm]\pi&\approx\frac{6{,}928}{2}\\[0.2cm]&\approx3{,}4641\end{align}

    Um die Obergrenze von Pi weiter anzunähern, kannst Du jetzt den Umfang vom äußeren 12-Eck mithilfe des inneren 12-Ecks auf gleiche Weise bestimmen. Selbiges gilt entsprechend auch für das Vieleck mit 24, 48 und letztlich 96 Ecken.

    Archimedes Pi – Das Wichtigste

    • Die Zahl Pi wird auch Kreiszahl genannt, da sie dem Verhältnis aus dem Umfang \(U\) eines Kreises und dessen Durchmesser\(d\) entspricht:

      \[\pi=\frac{U}{d}\]

    • In einem Einheitskreis entspricht Pi exakt dem halben Umfang \(U\) des Kreises.

      \[\pi=\frac{U}{2}\]

    • Im Jahr 250 v. Chr. konnte der Mathematiker Archimedes mit einem Näherungsverfahren die Kreiszahl auf 2 Nachkommastellen genau bestimmen.

      • Archimedes zeichnete innerhalb und außerhalb eines Einheitskreises jeweils ein regelmäßiges Sechseck, dessen Umfang er berechnen konnte. \[U_\text{inneres Sechseck} < U_{\text{Kre}\text{is}}< U_\text{äußeres Sechseck}\]

      • Pi kann jetzt durch den Umfang der beiden Sechsecke angenähert werden. \[\frac {U_\text{inneres Sechseck}}{2} < \pi < \frac {U_\text{äußeres Sechseck}}{2}\]

      • Um \(\pi\) weiter anzunähern, teilte Archimedes nun die Seiten der Sechsecke zu einem Zwölfeck, dann zu einem 24-Eck, bis hin zu einem 96-Eck.

    • Auf diese Weise konnte Archimedes folgende Grenzen von \(\pi\) bestimmen:

      \[3{,}1408450 < \pi <3{,}1428571\]

    • Der Umfang der jeweiligen Vielecke kann über den Satz des Pythagoras und den zweiten Strahlensatz berechnet werden.


    Nachweise

    1. Schmidt (2001). pi Geschichte und Algorithmen einer Zahl. Books on Demand.
    Häufig gestellte Fragen zum Thema Archimedes Pi

    Wie hat Archimedes Pi berechnet?

    • Archimedes zeichnete innerhalb und außerhalb eines Einheitskreises jeweils ein regelmäßiges Sechseck, dessen Umfang er berechnen konnte. Uinneres Sechseck <  UKreis <  Uäußeres Sechseck

    • Dadurch, dass Pi im Einheitskreis dem halben Umfang entspricht, konnte Archimedes diesen Zusammenhang entsprechend auch auf die Sechsecke anwenden und damit eine Unter- und Obergrenze von Pi ermitteln.
      (Uinneres Sechseck : 2) <  UKreis <  (Uäußeres Sechseck : 2)

    • Um Pi weiter anzunähern, teilte Archimedes nun die Seiten der Sechsecke zu einem Zwölfeck, dann zu einem 24-Eck, bis hin zu einem 96-Eck.

    Hat Archimedes Pi entdeckt?

    Archimedes gilt als Entdecker der ersten genauen, schriftlichen Herleitung der Zahl Pi. Im Jahr 250 v. Chr. schaffte er es, Pi auf zwei Nachkommastellen genau zu bestimmen. Die Zahl Pi wurde aber bereits 2000 Jahre v. Chr. im alten Ägypten näherungsweise hergeleitet auf einen Wert von 3,16.

    Warum endet die Zahl Pi nicht?

    Die Zahl Pi endet nicht, da sie eine irrationale Zahl ist. Pi kann damit nicht als Bruch zweier ganzer Zahlen geschrieben werden und ist ebenso nicht periodisch.

    Was hat Archimedes entdeckt?

    Archimedes entdeckte in der Mathematik unter anderem ein Näherungsverfahren für die Kreiszahl Pi und ein stellenwertbasiertes Zahlensystem. In der Physik formulierte er das Hebelgesetz sowie das archimedische Prinzip.

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Entscheide, welcher Zusammenhang für Pi im Einheitskreis gilt.

    Was ist die Zahl Pi (π)?

    Wie hat Archimedes die Zahl Pi angenähert?

    Weiter
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 9 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren