Betrag eines Vektors – Definition
Der Betrag \(|\vec{a}|\) eines Vektors \(\vec{a}\) ist definiert als Skalar (reeller Zahlenwert) und entspricht der Länge des Vektors \(\vec{a}\), wobei dieser immer größer oder gleich null ist: \(|\vec{a}|\geq0\).
Über den Betrag \(|\vec{a}|\) kannst Du also die Länge eines Vektors \(\vec{a}\) angeben. Die nachfolgende Grafik zeigt Dir dabei einen Vektor \(\vec{a}\) im zweidimensionalen Koordinatensystem und dessen Betrag \(|\vec{a}|\).
Abb. 1 - Vektor und Betrag.
Wie kannst Du nun den Betrag eines Vektors, wie etwa in der Abbildung \(1\), berechnen?
Betrag eines Vektors berechnen
Der Betrag \(|\vec{a}|\) eines Vektors \(\vec{a}\) wird berechnet, indem jede Vektorkoordinate des Vektors quadriert, alle Ergebnisse addiert und anschließend die Wurzel gezogen wird.
Besitzen Vektoren einen Betrag von \(|\vec{a}|=1\), dann handelt es sich um sogenannte Einheitsvektoren. Mehr dazu erfährst Du in der Erklärung „Einheitsvektor“.
Zusammengefasst ergeben sich die folgenden Formeln zur Berechnung des Betrags von zwei- und dreidimensionalen Vektoren.
Betrag eines Vektors Formel – Ebene (2D)
Der Betrag \(|\vec{a}|\) eines zweidimensionalen Vektors \(\vec{a}=\left(\begin{array}{c} a_x \\ a_y \end{array}\right)\) wird über die Formel
\[|\vec{a}|=\sqrt{a_x^2+a_y^2}\]
berechnet.
Diese Formel zur Berechnung des Betrags eines zweidimensionalen Vektors kann auf die Berechnung eines dreidimensionalen Vektors ausgeweitet werden.
Betrag eines Vektors Formel – Raum (3D)
Der Betrag \(|\vec{a}|\) eines dreidimensionalen Vektors \(\vec{a}=\left(\begin{array}{c} a_x \\ a_y \\ a_z\end{array}\right)\) wird über die Formel
\[|\vec{a}|=\sqrt{a_x^2+a_y^2+a_z^2}\]
berechnet.
Sieh Dir zur Anwendung der Formeln direkt einige Beispiele an!
Betrag eines Vektors – Beispiele
Zur Berechnung des Betrags eines Vektors werden in einem Beispiel die konkreten Zahlenwerte der Vektorkoordinaten in die Formel eingesetzt. Das Ergebnis der Berechnung entspricht der Länge des Vektors.
Betrag eines Vektors bestimmen – Beispiel Ebene
Um den Betrag eines zweidimensionalen Vektors \(\vec{a}\) in der Ebene zu bestimmen, musst Du diesen über die Formel \(|\vec{a}|=\sqrt{a_x^2+a_y^2}\) berechnen.
Berechne den Betrag \(|\vec{a}|\) des Vektors \(\vec{a}\).
\[\vec{a}=\left(\begin{array}{c} {\color{#1478C8}-2} \\ {\color{#00DCB4}1} \end{array}\right)\]
Lösung
Setze zur Berechnung des Betrags \(|\vec{a}|\) die Vektorkoordinaten \(a_x\) und \(a_y\) des Vektors \(\vec{a}\) in die Formel ein.
\[|\vec{a}|=\sqrt{{\color{#1478C8}a_x^2}+{\color{#00DCB4}a_y^2}}=\sqrt{{\color{#1478C8}(-2)^2}+{\color{#00DCB4}1^2}}=\sqrt{4+1}=\sqrt{5}\approx2{,}24\]
Damit hat der Vektor \(\vec{a}\) eine Länge von \(|\vec{a}|\approx2{,}24\,LE\).
Mit der gleichen Vorgehensweise kannst Du so auch Beträge von Vektoren im dreidimensionalen Koordinatensystem berechnen.
Länge eines Vektors berechnen – Beispiel Raum
Um die Länge eines dreidimensionalen Vektors \(\vec{a}\) im Raum zu bestimmen, musst Du diesen über die Formel \(|\vec{a}|=\sqrt{a_x^2+a_y^2+a_z^2}\) berechnen.
Berechne den Betrag \(|\vec{a}|\) des Vektors \(\vec{a}\).
\[\vec{a}=\left(\begin{array}{c} {\color{#1478C8}1} \\ {\color{#00DCB4}0} \\ {\color{#FA3273}-3}\end{array}\right)\]
Lösung
Setze zur Berechnung des Betrags \(|\vec{a}|\) die Vektorkoordinaten \(a_x\), \(a_y\) und \(a_z\) des Vektors \(\vec{a}\) in die Formel ein.
\[|\vec{a}|=\sqrt{{\color{#1478C8}a_x^2}+{\color{#00DCB4}a_y^2}+{\color{#FA3273}a_z^2}}=\sqrt{{\color{#1478C8}1^2}+{\color{#00DCB4}0^2}+{\color{#FA3273}(-3)^2}}=\sqrt{1+0+9}=\sqrt{10}\approx3{,}16\]
Damit hat der Vektor \(\vec{a}\) eine Länge von \(|\vec{a}|\approx3{,}16\,LE\).
Hast Du Lust, direkt noch ein paar Übungsaufgaben zum Betrag eines Vektors zu rechnen? Dann sieh Dir gleich die zugehörigen Karteikarten an!
Betrag eines Vektors – Das Wichtigste
- Der Betrag \(|\vec{a}|\) eines Vektors \(\vec{a}\) ist definiert als Skalar (reeller Zahlenwert) und entspricht der Länge des Vektors \(\vec{a}\), wobei dieser immer größer oder gleich null ist: \(|\vec{a}|\geq0\).
- Berechnet wird der Betrag \(|\vec{a}|\) eines zweidimensionalen Vektors \(\vec{a}=\left(\begin{array}{c} a_x \\ a_y \end{array}\right)\) über die Formel:
\[|\vec{a}|=\sqrt{a_x^2+a_y^2}\]
Der Betrag \(|\vec{a}|\) eines dreidimensionalen Vektors \(\vec{a}=\left(\begin{array}{c} a_x \\ a_y \\ a_z\end{array}\right)\) wird bestimmt über die Formel:
\[|\vec{a}|=\sqrt{a_x^2+a_y^2+a_z^2}\]
Ein Vektor mit dem Betrag \(|\vec{a}|=1\) ist ein Einheitsvektor.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen