Einheitsvektor

Du möchtest wissen, was genau ein Einheitsvektor ist, welche Schreibweise dafür benutzt wird und wie Du den Einheitsvektor berechnen kannst? Lies weiter und erfahre mehr über die Einheitsvektor-Formel und die Anwendung in Beispielen. Überprüfe anschließend gerne Dein Wissen zum Einheitsvektor mit den Aufgaben am Ende dieser Erklärung!

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Einheitsvektor Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 18.01.2023
  • 7 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 18.01.2023
  • 7 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Teste dein Wissen mit Multiple-Choice-Karteikarten

1/3

Wähle den passenden Einheitsvektor für die y-Achse eines dreidimensionalen Koordinatensystems aus.

1/3

Überprüfe, ob es sich bei dem Vektor v um einen Einheitsvektor handelt.v=(110)

1/3

Beurteile, welche Schreibweisen für den normierten Vektor eines Vektors a genutzt werden.

Weiter

Einheitsvektor – Schreibweise & Erklärung

Als Einheitsvektor e wird ein Vektor mit der Länge 1 bezeichnet: |e|=1.

Zu jedem Vektor a, der kein Nullvektor ist, lässt sich der zugehörige Einheitsvektor (normierter Vektor) ermitteln, der mit ea oder a^ oder a0 gekennzeichnet wird und ebenfalls die Länge 1 besitzt.

Die nachfolgende Grafik zeigt Dir einen Vektor a sowie den zugehörigen Einheitsvektor ea mit der Länge |ea|=1.

Einheitsvektor Vektor und normierter Vektor StudySmarterAbb. 1 - Vektor und normierter Vektor.

Der normierte Vektor ea (Einheitsvektor) zeigt dabei in dieselbe Richtung wie der Vektor a, hat jedoch eine Länge von 1.

Im kartesischen zweidimensionalen Koordinatensystem können die x- und y-Achse ebenfalls mit Einheitsvektoren ausgestattet werden. Diese werden Basisvektoren genannt, mit:

ex=(10)ey=(01)

Wie kannst Du nun den Einheitsvektor zu einem gegebenen Vektor berechnen?

Einheitsvektor berechnen

Der zu einem Vektor a zugehörige Einheitsvektor ea wird berechnet, indem zunächst der Betrag |a| ermittelt, der Kehrwert gebildet und anschließend mit dem Vektor a multipliziert wird. Somit wird der Vektor a auf die Länge 1 normiert.

Zusammengefasst ergibt sich die folgende Formel zur Berechnung des Einheitsvektors.

Einheitsvektor – Formel

Sei a ein Vektor mit einer Länge ungleich Null (|a|0), dann lässt sich der zugehörige Einheitsvektor ea über die Formel

ea=1|a|a bestimmen.

Möchtest Du einen Vektor a normieren, also den zugehörigen Einheitsvektor ea berechnen, so benötigst Du zunächst den Betrag |a| des Vektors a.

In der Erklärung „Betrag eines Vektors“ kannst Du alles rund um die Berechnung des Betrags nachlesen.

Hast Du den Betrag |a| des Vektors a berechnet, kannst Du den Kehrwert 1|a| bilden und anschließend mit dem Vektor a multiplizieren.

Sieh Dir zur Anwendung der Formel gleich Beispiele zum Einheitsvektor an!

Einheitsvektor – Beispiele

Einheitsvektoren (Vektoren mit der Länge 1) zeigen Dir die Richtung eines Vektors oder einer Koordinatenachse im Koordinatensystem an. Somit kannst Du mit Einheitsvektoren von einem Punkt im Koordinatensystem auch Strecken antragen.

Lerne mit Millionen geteilten Karteikarten

Kostenlos registrieren
Einheitsvektor

Einheitsvektor bestimmen – Beispiel Vektor normieren

Der normierte Vektor (Einheitsvektor) ea eines Vektors a im dreidimensionalen Raum erfolgt über die Formel ea=1|a|a. Dazu wird der Betrag |a| des Vektors a benötigt.

Für den Vektor a soll der normierte Vektor ea bestimmt werden.

a=(403)

Lösung

Zunächst berechnest Du die Länge des Vektors |a| über den Betrag:

|a|=42+02+32=25=5

Der Betrag wird nun in die Formel für den zugehörigen Einheitsvektor ea eingesetzt.

ea=1|a|a=15(403)=(154150153)=(45035)

Hast Du den Einheitsvektor ea berechnet, kannst Du noch einmal überprüfen, ob die Berechnung korrekt war, indem Du den Betrag |ea| ermittelst:

|ea|=(45)2+02+(35)2=16+925=1=1

Mit dem Einheitsvektor kannst Du auch Strecken antragen, wie Du im nächsten Beispiel sehen kannst.

Einheitsvektor bestimmen – Beispiel Strecke abtragen

Hast Du die Koordinaten eines Punkts P im Raum gegeben sowie eine durch einen Vektor a vorgegebene Richtung, so lassen sich Streckenlängen in diese Richtung über den Einheitsvektor ea antragen und der Zielpunkt P berechnen.

Gegeben ist ein Punkt P(1|5|2). Ermittle die Koordinaten des Punkts P, wenn der Punkt P um 12 Einheiten in Richtung des Vektors a verschoben wird.

a=(221)

Lösung

Zunächst wird der Vektor a auf die Länge 1 normiert.

ea=1|a|a=122+22+12(221)=13(221)=(232313)

Um den neuen Punkt P zu ermitteln, wird 12 mal der Einheitsvektor ea zum Ortsvektor p des Punkts P addiert.

p=p+12ea=(152)+12(232313)=(9136)

Damit liegt der Punkt P bei P(9|13|6).

Hast Du Lust, direkt noch ein paar Übungsaufgaben zum Einheitsvektor zu meistern? Dann ab zum nächsten Kapitel!

Finde relevante Lernmaterialien und bereite dich auf den Prüfungstag vor

Kostenlos registrieren
Einheitsvektor

Einheitsvektor – Aufgaben mit Lösung

Hinweis: Berechnest Du einen Einheitsvektor über die Formel ea=1|a|a, dann kannst Du anschließend über den Betrag |ea| herausfinden, ob die Berechnung korrekt war. Es gilt: |ea|=1.

Vektor normieren – Aufgabe 1

Normiere den Vektor a.

a=(113)

Lösung

Zunächst wird die Länge |a| des Vektors a bestimmt.

|a|=12+12+32=11

Nach Einsetzen und Ausrechnen erhältst Du für den Einheitsvektor ea:

ea=1|a|a=111(113)=(111111311)

Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen

Kostenlos registrieren
Einheitsvektor

Vektor überprüfen Aufgabe 2

Prüfe, ob es sich bei dem Vektor a um einen normierten Vektor handelt.

a=(12340)

Lösung

Zur Überprüfung muss der Betrag des Vektors ermittelt werden.

|a|=(12)2+(34)2+02=14+916+0=4+916=13161×

Dies zeigt, dass es sich beim Vektor a nicht um einen Vektor der Länge 1 handelt.

Noch mehr Übungsaufgaben zum Einheitsvektor findest Du in den zugehörigen Karteikarten!

Einheitsvektor – Das Wichtigste

  • Als Einheitsvektor e wird ein Vektor mit der Länge 1 bezeichnet: |e|=1.
  • Zu jedem Vektor a, der kein Nullvektor ist, lässt sich der zugehörige Einheitsvektor ea (normierter Vektor) bilden.
    • Schreibweisen Einheitsvektor: ea oder a^ oder a0
  • Berechnet wird der zugehörige Einheitsvektor ea eines Vektors a über die Formel: ea=1|a|a
Häufig gestellte Fragen zum Thema Einheitsvektor

Was ist ein Einheitsvektor? 

Als Einheitsvektor wird ein Vektor mit der Länge (dem Betrag) 1 bezeichnet.

Für was ist der Einheitsvektor? 

Einheitsvektoren (Vektoren mit der Länge 1) werden genutzt, um die Richtung eines Vektors oder einer Koordinatenachse im Koordinatensystem anzuzeigen. Somit können damit auch Strecken abgetragen werden.

Wie wird der Einheitsvektor berechnet? 

Wird der Einheitsvektor zu einem gegebenen Vektor berechnet, so wird zunächst der Betrag des Vektors ermittelt, der Kehrwert gebildet und anschließend mit dem Vektor multipliziert. Das Ergebnis ist der normierte Vektor (Einheitsvektor).

Wann ist ein Vektor normiert? 

Jeder Vektor, der kein Nullvektor ist, lässt sich mit einer Formel normieren (auf die Länge 1 bringen). Ein normierter Vektor der Länge 1 entspricht also dem Einheitsvektor.

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Mathe Lehrer

  • 7 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren