In diesem Kapitel geht es um die Hessesche Normalform. Dieses Thema ist in das Fach Mathematik einzuordnen. Die Hessesche Normalform gehört zum Thema der Vektoren.
Wir erklären dir in den folgenden Abschnitten die wichtigsten Begriffe zu diesem Thema und verdeutlichen dir das Ganze noch an Beispielen.
Am Ende dieses Kapitels bist du sicher ein Profi! ☺Am Schluss haben wir dir noch einmal das Wichtigste zum Thema „Hessesche Normalform“ zusammengefasst!
Um ein breiteres Verständnis für das Überthema Vektoren zu erhalten, schau dir doch unseren anderen Artikel zum Thema Vektoren an!
Teste dein Wissen mit Multiple-Choice-Karteikarten
1/3
1/3
1/3
Punktzahl
Das war ein fantastischer Start!
Das kannst du besser
Melde dich an, um deine eigenen Karteikarten zu erstellen
Zuerst beantworten wir dir einmal die Frage, was denn die Hessesche Normalform überhaupt ist.
Eine Geradengleichung oder Ebenengleichung kann in der Hesseschen Normalform geschrieben sein.
Beachte bei der Hesseschen Normalform
Hierbei müssen wir allerdings beachten, dass die Geradengleichung in der Hesseschen Normalform nur im 2-dimensionalen Raum möglich ist, da es im 3-dimensionalen Raum keinen eindeutigen Normalenvektor für diese Gerade geben würde. Eine Ebene ist hingegen nur im 3-dimensionalen Raum möglich.
Für was brauchen wir die Hessesche Normalform?
Oft müssen wir den Abstand eines Punktes zur Ebene berechnen. Gerade dann ist die Hessesche Normalform eine große Hilfe, denn um den Abstand zu erhalten, musst du lediglich den beliebigen Punkt in die Hessesche Normalform einsetzen.
Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen
Beispielaufgabe zur Berechnung des Abstandes von einem Punkt zur Ebene
Die Aufgabe lautet:
Berechne den Abstand |d| des Punktes P (1|2|3) von der Ebene
Lösung:
Wir haben die Ebene bereits in der Hesseschen Normalform gegeben, was uns die Berechnung des Abstandes zwischen dem Punkt und der Ebene recht einfach macht.
Beispielaufgabe 2: Die Gleichung ist in der Normalenform gegeben
Die Aufgabe lautet:
Die Ebene in der Normalenform lautet: Wandle diese in die Hessesche Normalform um.
Lösung:
Als erstes berechnen wir die Länge des Normalenvektors:Zur Erinnerung:Mit dieser Formel berechnest du die Länge eines Vektors:
Mit diesen Informationen können wir die Ebene in die Hessesche Normalform umwandeln.
Hessesche Normalform - Alles Wichtige auf einen Blick
Die Geradengleichung in der Hesseschen Normalform ist nur im 2-dimensionalen Raum möglich. Eine Ebene in dieser Form ist hingegen nur im 3-dimensionalen Raum möglich.
Hilfreich zur Berechnung des Abstands eines Punktes zur Ebene, denn der Punkt muss lediglich in die Gleichung eingesetzt werden.
Lerne schneller mit den 20 Karteikarten zu Hessesche Normalform
Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt
Digital Content Specialist
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.