Springe zu einem wichtigen Kapitel
Innenwinkelsumme Definition
Um die Innenwinkelsumme verstehen zu können, solltest du wissen, was ein Innenwinkel ist.
Ein Innenwinkel ist in der Geometrie der Winkel, der von zwei benachbarten Seiten eingeschlossen wird. Dementsprechend, und wie der Name auch schon sagt, liegt er im Inneren einer geometrischen Figur.
In diesem Fall ist der Winkel γ zwischen den Seiten a und b eingeschlossen:
Abbildung 1: Innenwinkel
Die Anzahl der Ecken gibt hierbei die Anzahl der Innenwinkel an. Ein Dreieck hat drei Ecken und daher drei Innenwinkel:
Es gibt nicht nur Innenwinkel, sondern auch sogenannte Außenwinkel. Außenwinkel sind die Nebenwinkel eines Innenwinkels. Sie entstehen, wenn eine Seite verlängert wird.
Nebenwinkel sind Winkel, die direkt nebeneinander liegen. Zusammen ergeben sie immer 180°. Wenn du mehr darüber erfahren willst, lies dir unseren Artikel zum Thema Nebenwinkel durch.
Innenwinkelsumme Dreieck
Der Innenwinkelsummensatz, auch Innenwinkelsatz oder Winkelsummensatz genannt, besagt, dass die Summe aller Innenwinkel immer 180° ergeben muss.
Innenwinkelsumme Dreieck berechnen
Nach dem Innenwinkelsummensatz gilt:
Diese Formel hilft dir, einen Winkel α zu berechnen, wenn du die Winkel β und γ gegeben hast.
Die Innenwinkelsumme von 180° gilt nur für Dreiecke! Beispielsweise haben Vierecke eine Innenwinkelsumme von 360° und Fünfecke eine Innenwinkelsumme von 540°. Aber wie kommt man darauf?
Abbildung 4: Innenwinkelsumme Viereck
Wenn du dir ein Viereck anschaust, kannst du es in zwei Dreiecke zerlegen. Du kannst also die Innenwinkelsumme von zwei Dreiecken addieren:
So kannst du mit jedem Vieleck vorgehen: Es in Dreiecke zerlegen und die Innenwinkelsumme der Dreiecke addieren. Das geht bei Vierecken und Fünfecken, aber schon bei Sechsecken wird es schwierig.
Es ergibt sich jedoch ein Zusammenhang:
Man nimmt immer die Anzahl an Ecken n minus 2 und dann weiß man, wie viele Dreiecke in eine Figur passen.
Beispiel:
Man hat ein Dreizehneck. Also ist n in diesem Fall. Man rechnetaus und multipliziert das Ergebnis mit 180°:
Ein Dreizehneck hat also eine Innenwinkelsumme von 1980°.
Innenwinkelsumme Dreieck Beweis
Doch woher kommt diese Regel? Woher weißt du, dass das stimmt? Man kann sie einfach beweisen.
Erklärung | Beispiel |
Ein Dreieck mit der Seite c ist gegeben. Durch den gegenüberliegenden Punkt C wird eine Gerade gezogen, die parallel zur Seite c ist. | Abbildung 5: Beweis des Innenwinkelsatzes |
Jetzt können die Winkel α' und β' neben dem Winkel γ an der Geraden g platziert werden. Die Winkel α' und β' sind in diesem Fall, aufgrund des Wechselwinkelsatzes, genauso groß wie α und β. Der Wechselwinkelsatz besagt, dass Wechselwinkel genau dann gleich groß sind, wenn sie an parallelen Geraden liegen. | Abbildung 6: Beweis des Innenwinkelsatzes Abbildung 7: Beweis des Innenwinkelsatzes |
Wie du siehst, ergeben die Winkel α', β' und γ zusammen 180°. Da α = α' und β = β' gilt, müssen also auch α, β und γ zusammen 180° ergeben. Wenn man das mathematisch aufschreibt, kommt man wieder zum Innenwinkelsatz: | Abbildung 8: Beweis des Innenwinkelsatzes |
Du kannst dir auch ein Dreieck aus einem Stück Papier ausschneiden, zwei Ecken abreißen und diese neben die letzte Ecke legen. Dann wirst du sehen, dass diese zusammen einen Halbkreis, also 180°, ergeben.
Innenwinkelsumme rechtwinkliges Dreieck
Rechtwinklige Dreiecke sind oft ein Sonderfall. In diesem Fall hast du jedoch Glück, da bei der Innenwinkelsumme eines Dreiecks alles genauso funktioniert wie bei jedem anderen Dreieck.
Gegeben ist ein rechtwinkliges Dreieck. Die Besonderheit liegt also darin, dass bei der Berechnung der Innenwinkelsumme immer ein Winkel 90° hat. Dies prüfen wir beispielhaft an dem Dreieck ABC:
Abbildung 9: rechtwinkliges Dreieck
Wir können also einfach die Werte α = 45°, β = 45° und γ = 90° in den Innenwinkelsatz einsetzen. Das Ergebnis müsste dann 180° sein:
Wie du siehst, stimmt die Aussage und damit der Innenwinkelsatz. Das bedeutet, dass du, unabhängig von der Art des Dreiecks, den Satz anwenden kannst und das Ergebnis immer 180° ist.
Innenwinkelsumme Dreieck Übung
Aufgabe
Gib die Innenwinkel γ, η und ζ an:
Abbildung 10: Beispiel Dreieck
Lösung
Die gegebene Zeichnung besteht aus drei Dreiecken: ein großes Dreieck, welches wiederum in zwei kleinere Dreiecke unterteilt ist. Du musst all diese Dreiecke nutzen, um die gesuchten Winkel berechnen zu können.
Als Erstes nehmen wir uns η vor. Der Winkel η ist zusammen mit α und δ in dem Dreieck ADC. Deren Summe muss also 180° ergeben:
Als Nächstes können wir uns ζ vornehmen. Der Winkel ζ bildet mit β und ε das Dreieck DBC. Hier gehen wir genauso vor:
Als Letztes müssen wir noch den Winkel γ ausrechnen. Hier haben wir jetzt zwei Möglichkeiten:
- η und ζ zusammenrechen
- Innenwinkelsatz des großen Dreiecks
Zu a.: Da die Winkel η und ζ zusammen den Winkel γ bilden, können wir einfach deren Summe berechnen und erhalten so den Winkel γ:
Zu b.: Alternativ können wir γ auch über die Innenwinkelsumme des "großen" Dreiecks berechnen. Hier gehen wir genauso wie bei der Berechnung der Winkel η und ζ vor:
Abbildung 11: Beispiel Dreieck Lösung
Innenwinkelsumme Dreieck - Das Wichtigste
- Ein Innenwinkel ist ein Winkel, der von zwei benachbarten Seiten, innerhalb einer geometrischen Figur, eingeschlossen ist.
- Anzahl der Ecken = Anzahl der Innenwinkel.
- Die Summe aller Innenwinkel im Dreieck ergibt immer 180°.
- Der Innenwinkelsatz besagt: .
- Der Innenwinkelsatz gilt für Dreiecke jeder Art.
- Innenwinkelsumme in anderen geometrischen Figuren:.
Lerne schneller mit den 2 Karteikarten zu Innenwinkelsumme Dreieck
Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.
Häufig gestellte Fragen zum Thema Innenwinkelsumme Dreieck
Wie berechnet man die Innenwinkelsumme?
Die Innenwinkelsumme kann mit Hilfe des Innenwinkelsummensatzes, auch Innenwinkelsatz oder Winkelsummensatz genannt, berechnet werden. Die Formel lautet so: alpha + beta + gamma = 180°
Wie hoch ist die Innenwinkelsumme?
Die Innenwinklesumme eines Dreiecks beträgt immer 180°. Die Innenwinkelsumme eines Vierecks beträgt immer 360°. Je nach Figur ist die Innenwinkelsumme also anders.
Was bedeutet Innenwinkel?
Ein Innenwinkel ist ein Winkel, der zwischen zwei benachbarten Seiten eingeschlossen ist. Ein Innenwinkel ist, im Gegensatz zum Außenwinkel, immer innerhalb einer geometrischen Figur.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr