Springe zu einem wichtigen Kapitel
Kongruenz Grundlagenwissen
Bevor Du mit den kongruenten Figuren loslegen kannst, solltest Du die Definition von Kongruenz im Allgemeinen kennen.
Kongruenz beschreibt das Verhältnis zweier Figuren zueinander. Stimmen diese Figuren in Form und Größe überein, nennt man sie kongruent oder auch deckungsgleich.
Bei kongruenten Figuren stimmen sich entsprechende Seiten und Winkel in ihrer Größe überein.
Um kongruente Figuren zu erzeugen, gibt es vier Kongruenzabbildungen:
- Achsenspiegelung
- Drehung/ Punktspiegelung
- Verschiebung
- Schubspiegelung
Möchtest Du noch mal genauer nachlesen, was Kongruenz ist und was die Kongruenzabbildungen sind? Dann solltest Du Dir den Artikel Kongruenz anschauen.
Kongruente Figuren Definition
Sind Dir zwei Figuren gegeben, kannst Du prüfen, ob diese kongruent zueinander sind.
Kongruente Figuren sind Figuren, welche in Form und Größe übereinstimmen. Alle Strecken und Bildstrecken sowie Winkel und Bildwinkel der beiden Figuren sind also gleich groß.
Seien die Dreiecke ABC und A'B'C' kongruent.
Dann gilt:
- Alle Seiten haben dieselbe Länge: a = a', b = b', c = c'
- Alle Winkel sind gleich groß: α = α', β = β', γ = γ'
Kongruente Figuren – Strecke und Bildstrecke
Kongruente Figuren besitzen an all ihren Seiten die gleichen Seitenlängen.
Für die beiden kongruenten Dreiecke gilt also:
- a = a' = 4 cm
- b = b' = 4 cm
- c = c' = 5,7 cm
Kongruente Figuren – Winkel und Bildwinkel
Sind zwei Figuren kongruent zueinander, stimmen auch ihre Winkel überein.
In den beiden kongruenten Dreiecken ist dann:
- α = α' = 45°
- β = β' =45°
- γ = γ' = 90°
Kongruente Figuren mit gleichem Flächeninhalt
In den zwei vorigen Abschnitten hast Du gesehen, dass kongruente Figuren in ihren Angaben übereinstimmen. Da sich der Flächeninhalt aus diesen Angaben berechnet, ist folglich auch der Flächeninhalt beider Figuren gleich groß. Kongruente Figuren lassen sich exakt aufeinander abbilden.
Für die zwei kongruenten Dreiecke gilt:
- Flächeninhalt ABC = Flächeninhalt A'B'C' = 8 cm²
Die Dreiecke ABC und DEF sind kongruent zueinander und können durch eine Punktspiegelung ineinander überführt werden.
Wir können also darauf schließen, dass
- a = f = 1 cm
- b = d = 2,5 cm
- c = e = 2,7 cm
Daraus folgt ebenfalls die Flächengleichheit beider Dreiecke.
Deckungsgleichheit und der Unterschied zur Flächengleichheit
Sind zwei Figuren kongruent, nennt man sie auch deckungsgleich.
Da sie in Form und Größe übereinstimmen, kann man sie so übereinander legen, dass sie sich gänzlich abdecken.
Das kannst Du Dir so vorstellen:
Auf einem Stück Papier sind zwei Figuren aufgezeichnet. Du schneidest diese aus und um zu prüfen, ob sie kongruent zueinander sind, legst Du sie übereinander. Decken die Figuren sich so ab, dass an keiner Stelle ein Rand übersteht, sind sie kongruent. Steht jedoch etwas über und kann dieser Rand nicht durch Drehen, Verschieben etc. beseitigt werden, liegt keine Kongruenz vor.
Deckungsgleiche Vierecke | Nicht deckungsgleiche Vierecke |
Oft wird Deckungsgleichheit mit Flächengleichheit verwechselt.
Flächengleich bedeutet, dass zwei Figuren denselben Flächeninhalt haben.
Deckungsgleichheit besagt, dass zwei Figuren sowohl in ihrem Flächeninhalt als auch in Form und Größe übereinstimmen.
Das bedeutet Deckungsgleiche Figuren sind auch immer flächengleich, aber flächengleiche Figuren sind nicht immer deckungsgleich, da sie unterschiedliche Form und Größe haben können.
Schau Dir das noch mal im folgenden Überblick an!
Deckungsgleichheit (Kongruenz) | Flächengleichheit |
|
|
Kongruente Figuren Beispiele
Während kongruente Figuren in Form und Größe übereinstimmen, können ähnliche Figuren hinsichtlich ihrer Größe unterschiedlich sein.
Die Operation der Vergrößerung oder Verkleinerung kann also aus zwei kongruenten Figuren zwei ähnliche, nicht mehr kongruente, Figuren machen. Andersherum können zwei ähnliche Figuren durch Vergrößerung oder Verkleinerung in kongruente Figuren überführt werden.
Möchtest Du mehr über Ähnlichkeit wissen? Dann lies Dir gerne unsere Artikel dazu durch!
Die Vierecke ABCD und EFGH sind ähnlich zueinander, da sie dieselbe Form haben.
Vergrößern wir das Viereck ABCD, stimmen die beiden Vierecke nicht nur in ihrer Form, sondern auch in ihrer Größe überein und sind somit kongruent.
Kongruente Figuren erkennen
Möchtest Du feststellen, ob zwei Figuren A und B kongruent zueinander sind, hast Du verschiedene Möglichkeiten dies zu überprüfen.
Kongruenzabbildungen
Möchtest Du mithilfe von Kongruenzabbildungen prüfen, ob es sich bei zwei Figuren A und B um kongruente Figuren handelt, solltest Du so vorgehen!
Prüfen von Kongruenzabbildungen – Vorgehen
- Prüfe, ob die Figuren A und B in Form und Größe übereinstimmen. Sollte dies nicht der Fall sein, kann es sich nicht um kongruente Figuren handeln.
- Haben die Figuren A und B die gleiche Ausrichtung? Ansonsten kannst Du eine der beiden drehen oder eine Punktspiegelung durchführen.
- Sind die Figuren A und B spiegelverkehrt, kannst Du eine Achsenspiegelung bei einer der Figuren durchführen.
- Kannst Du die Figuren A und B nun so verschieben, dass diese aufeinanderliegen und sich gänzlich abdecken, liegt Kongruenz vor.
Solltest Du Dir nicht mehr sicher sein, was Kongruenzabbildungen sind und welche es gibt, kannst Du das im Artikel Kongruenz nachlesen. Du findest ihn vor diesem Artikel.
Aufgabe
Prüfe mithilfe von Kongruenzabbildungen, ob die Parallelogramme ABCD und EFGH kongruent zueinander sind.
Lösung
Die Parallelogramme ABCD und EFGH sind kongruent zueinander.
1. | 2. |
Die Parallelogramme ABCD und EFGH besitzen die gleiche Größe. | Drehe das Parallelogramm EFGH am Punkt P um 90° gegen den Uhrzeigersinn. |
3. | 4. |
Spiegel das Parallelogramm EFGH an einer zu EF senkrechten Gerade. | Verschiebe das Parallelogramm EFGH so weit nach links, dass es über dem Parallelogramm ABCD liegt. |
Kongruenzsätze berechnen
Für Dreiecke gibt es die sogenannten Kongruenzsätze. Sie sagen aus, welche Angaben zweier Dreiecke gegeben sein müssen, damit du entscheiden kannst, ob sie kongruent sind oder nicht. Falls du dir die vier Kongruenzsätze noch einmal anschauen möchtest, kannst du dies im Artikel Kongruenzsätze tun.
Sind dir zwei Dreiecke gegeben, kannst du folgendermaßen prüfen, ob es sich um kongruente Dreiecke handelt:
- Finde heraus, welche Angaben du von deinen Dreiecken hast.
- Prüfe, ob diese Angaben reichen, um einen Kongruenzsatz anzuwenden.
Achte bei den Kongruenzsätzen besonders darauf, dass die Reihenfolge der Angaben in den meisten Fällen eine wichtige Rolle spielt.
Aufgabe
Prüfe, ob die Dreiecke ABC und DEF kongruent zueinander sind.
Lösung
Wir können den 2. Kongruenzsatz (SWS) anwenden:
- a = a' = 4 cm
- b = b' = 6 cm
- α = α' = 90°
Da diese beiden Seiten und ihr eingeschlossener Winkel übereinstimmen handelt es sich um kongruente Dreiecke.
Hast Du keine Dreiecke, sondern zwei Vierecke gegeben, könntest Du diese jeweils in zwei Dreiecke teilen. Die Dreiecke der verschiedenen Vierecke könntest Du dann mit den Kongruenzsätzen auf Kongruenz untersuchen.
Sind die Dreiecke kongruent zueinander, sind auch die Vierecke kongruent zueinander.
Kongruenzabbildungen
Aufgabe 1
Welcher der Figuren sind kongruent zueinander? Kannst Du ähnliche Figuren erkennen?
Lösung
Kongruent zueinander:
- A & G
- E & I
- H & D
Ähnlich:
- H & D sind ähnlich zu C
Aufgabe 2
Prüfe mithilfe von Kongruenzabbildungen, ob die Vierecke kongruent zueinander sind.
Lösung
Die Vierecke sind kongruent zueinander, da EFGH durch eine Achsenspiegelung von ABCD erzeugt werden kann.
Kongruente Figuren – Das Wichtigste
- Kongruente Figuren stimmen in Form und Größe überein.
- Strecke und Bildstrecke, Winkel und Bildwinkel sowie die Flächeninhalte zweier kongruenter Figuren sind gleich.
- Legst Du zwei kongruente Figuren übereinander, decken diese sich gänzlich ab.
- Kongruente Figuren lassen sich durch Kongruenzabbildungen ineinander überführen.
- Mit Kongruenzabbildungen kannst Du auch überprüfen, ob zwei Figuren kongruent zueinander sind.
- Bei Dreiecken überprüfst Du Kongruenz auch mit den Kongruenzsätzen.
- Deckungsgleichheit impliziert Flächengleichheit, aber nicht andersherum.
- Ähnliche Figuren sind nicht immer kongruent, aber kongruente Figuren immer ähnlich.
Lerne schneller mit den 5 Karteikarten zu Kongruente Figuren
Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.
Häufig gestellte Fragen zum Thema Kongruente Figuren
Wie entstehen kongruente Figuren?
Kongruente Figuren entstehen durch Kongruenzabbildungen.
Welche Figuren sind kongruent zueinander?
Jene Figuren sind kongruent zueinander, welche in all ihren Angaben übereinstimmen. Seitenlängen, Winkelangaben und der Flächeninhalt sind bei kongruenten Figuren identisch.
Welche Figuren sind deckungsgleich?
Figuren sind deckungsgleich, wenn sie kongruent zueinander sind. Das bedeutet, dass sie in Form und Größe übereinstimmen, sich also gänzlich abdecken, wenn man sie übereinander legt.
Was ist kongruent zueinander?
Kongruent zueinander ist eine Relation zweier oder mehrerer Figuren zueinander. Es bedeutet, dass diese Figuren in Form und Größe übereinstimmen.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr