Was ist ein Prisma?
In diesem Kapitel sollst du zunächst lernen, was ein Prisma ausmacht, bevor du lernst, wie du Volumen und Oberflächeninhalt berechnen kannst.
Definition und Eigenschaften eines Prismas
Du kannst dir zunächst einmal verschiedene Beispiele für Prismen ansehen.
Prismen ist der Plural von Prisma.
Abbildung 1: Schrägbilder drei verschiedener Prismen
Alle Körper, die du auf dem Bild siehst, sind Prismen. Was haben diese Prismen also gemeinsam?
Bei jedem dieser Körper kannst du dir vorstellen, dass die Fläche, auf der der Körper steht, entlang einer geraden Linie verschoben wird. Dasselbe Vieleck, auf dem das Prisma steht, begrenzt es also auch oben.
Abbildung 2: Grundbegriffe des Prismas
Die Fläche, auf der das Prisma steht, wird Grundfläche genannt. Die Fläche, die das Prisma nach oben hin begrenzt, wird Deckfläche genannt. Alle Seitenflächen zusammen werden als Mantel bezeichnet.
Vorsicht: Manchmal werden Prismen auch so abgebildet, dass sie nicht auf ihrer Grundfläche stehen, sondern auf einer ihrer Seitenflächen.
Die Seiten der Grundfläche und der Deckfläche werden Grundkanten genannt. Die Strecken, die jeweils zwei zusammen gehörige Eckpunkte von Grund- und Deckfläche verbinden, werden Mantellinien genannt. Alle Mantellinien sind gleich lang und parallel zueinander.
Ein Prisma ist ein geometrischer Körper, der sich aus einer Grundfläche, einer Deckfläche und einem Mantel zusammensetzt.
- Die Grundfläche und die Deckfläche bestehen aus Vielecken, die kongruent und parallel zueinander sind.
- Der Mantel besteht aus Parallelogrammen.
Ecken, Kanten und Flächen eines Prismas
Wir betrachten ein Prisma, das ein Vieleck mit n Ecken als Grundfläche hat. Für n kannst du dabei 3, 4, 5, ... einsetzen. Ein solches Prisma wird n-seitiges Prisma genannt.
Anzahl der Ecken
Ein n-seitiges Prisma hat insgesamt Ecken, denn es besitzt
- die n Ecken der Grundfläche und
- die n Ecken der Deckfläche.
Anzahl der Kanten
Ein n-seitiges Prisma besitzt
- n Grundkanten der Grundfläche,
- n Grundkanten der Deckfläche und
- n Mantellinien.
Insgesamt hat es also Kanten.
Flächen
Die Anzahl der Kanten der Grundfläche entspricht der Anzahl der Seitenflächen. Ein n-seitiges Prisma hat also
- n Seitenflächen,
- eine Grundfläche und
- eine Deckfläche.
Ein n-seitiges Prisma hat immer Flächen.
Besondere Prismen – Schrägbild
Im Folgenden lernst du verschiedene spezielle Prismen kennen.
Gerades und schiefes Prisma
Es wird zwischen geraden und schiefen Prismen unterschieden. Im Beispiel siehst du ein gerades Prisma (blau) und ein schiefes Prisma (orange).
Abbildung 3: Schrägbilder eines geraden und eines schiefen Prismas
Bei einem geraden Prisma wird die Grundfläche sozusagen nur nach oben verschoben.
Bei einem geraden Prisma verlaufen die Mantellinien senkrecht zu den Grundkanten.
Die Seitenflächen sind dann Rechtecke.
Bei einem schiefen Prisma wird die Grundfläche schräg verschoben.
Bei einem ungeraden Prisma verlaufen die Mantellinien nicht senkrecht zu den Grundkanten.
Die Seitenflächen sind dann Parallelogramme
Reguläres Prisma
Eine weitere spezielle Form von Prismen sind die regulären Prismen.
Ein reguläres Prisma ist ein gerades Prisma, das ein regelmäßiges Vieleck als Grundfläche hat.
Ein regelmäßiges Vieleck ist ein Vieleck, bei dem alle Seitenlängen gleich lang und alle Innenwinkel gleich groß sind.
Im Folgenden findest du drei Beispiele für reguläre Prismen:
Abbildung 4: Schrägbilder eines dreiseitigen, vierseitigen und fünfseitigen regulären Prismas
- Die Grundfläche eines dreiseitigen regulären Prismas ist ein regelmäßiges Dreieck, das auch als gleichseitiges Dreieck bezeichnet wird.
- Die Grundfläche eines vierseitigen regulären Prismas ist ein regelmäßiges Viereck, das auch als Quadrat bezeichnet wird.
- Ein vierseitiges, reguläres Prisma wird auch als Quader bezeichnet.
Auch ein Würfel ist ein reguläres, vierseitiges Prisma, das als Grundfläche ein Quadrat hat und dessen Höhe der Länge des Quadrats entspricht.
Volumen eines Prismas berechnen – Formel
Diese allgemeine Formel zur Berechnung des Volumens eines Prismas gilt für gerade, schiefe, regelmäßige und nicht regelmäßige Prismen.
Das Volumen eines Prismas wird berechnet, indem die Grundfläche G mit der Höhe h multipliziert wird:
.
Die Grundfläche G kann bei einem Prisma sehr unterschiedliche Formen annehmen, wie zum Beispiel Dreieck, Trapez, Quadrat oder Rechteck. Deswegen musst du immer darauf achten, dass du die richtige Grundflächenformel einsetzt.
Mit der Höhe h eines Prismas wird der Abstand der beiden Ebenen bezeichnet, in denen die Grund- und die Deckfläche liegen.
Abbildung 5: Höhe eines geraden und eines schiefen Prismas
Bei einem geraden Prisma entspricht die Höhe der Länge einer Mantellinie. Bei einem schiefen Prisma hingegen entspricht die Höhe des Prismas dem Abstand der Deckfläche zur Ebene der Grundfläche.
Dies kannst du auch in Abbildung 5 sehen.
Schau dir beispielhaft die Volumenberechnung eines dreiseitigen Prismas an:
Aufgabe
Gegeben ist ein dreiseitiges gerades Prisma. Die Grundseite des Dreiecks ist lang. Die Höhe des Dreiecks beträgt und die Höhe des Prismas beträgt .
Abbildung 6: Beispielaufgabe zur Volumenberechnung
Berechne das Volumen des beschriebenen Prismas.
Lösung
In diesem Beispiel ist die Grundfläche des Prismas ein Dreieck. Die Grundfläche wird deshalb auch mit der Flächeninhaltsformel für das Dreieck berechnet:
Die Höhe kannst du den Angaben direkt entnehmen und dann das Volumen des Prismas berechnen:
Das Volumen des Prismas ist also .
Wenn du mehr über die Berechnung des Volumens von Prismen erfahren möchtest, dann kannst du im Artikel "Volumen Prisma" weiter lesen.
Oberflächeninhalt eines Prismas berechnen – Formel
Wie du den Oberflächeninhalt eines Prismas berechnen kannst, siehst du besonders gut, wenn du dir das Netz des Prismas anschaust.
Betrachte dieses fünfseitige Prisma:
Abbildung 7: Oberflächeninhalt eines fünfseitigen regulären Prismas
Die Seitenflächen werden nach außen geklappt und das Netz des Prismas entsteht:
Abbildung 8: Netz eines regulären fünfseitigen Prismas
Der Oberflächeninhalt dieses Prismas setzt sich also aus der Grund- und Deckfläche und den fünf Seitenflächen des Mantels zusammen.
Für alle Prismen gilt also, dass sich der Oberflächeninhalt aus der Grundfläche, der Deckfläche und der Mantelfläche zusammensetzt.
Die Oberfläche eines Prismas besteht aus dem Flächeninhalt der Deckfläche, der Grundfläche und der Mantelfläche:
.
Weil Grund- und Deckfläche gleich groß sind, kann die Formel vereinfacht werden zu:
.
Je nachdem welche Form die Grundfläche (Dreieck, Trapez, …) besitzt, musst du die richtige Formel für den Flächeninhalt des jeweiligen Vielecks finden und einsetzen.
Bei einem geraden Prisma kannst du die Mantelfläche wieder mit einer eigenen Formel berechnen. Die Anzahl der Kanten der Grundfläche entspricht der Anzahl der Seitenflächen.
Abbildung 9: Dreiseitiges gerades Prisma
Das gerade Prisma kann so auseinander geklappt werden, dass die drei Seitenflächen des Mantels zusammen ein großes Rechteck bilden.
Abbildung 10: Netz eines dreiseitigen geraden Prismas
Dieses Rechteck, das aus den drei Seitenflächen gebildet wird, entspricht dem Mantel. Um den Flächeninhalt des Mantels zu berechnen, müssen jetzt die beiden Seitenlängen des Rechtecks multipliziert werden.
- Die eine Seitenlänge entspricht dem Umfang der Grundfläche des Prismas.
- Die andere Seitenlänge entspricht der Höhe des Prismas.
Die Formel zur Berechnung der Mantelfläche eines geraden Prismas lautet:
.
Am folgenden Beispiel lernst du, wie du den Oberflächeninhalt eines Prismas berechnen kannst.
Aufgabe
Gegeben ist ein dreiseitiges gerades Prisma. Die Längen der Seiten des Dreiecks sind , und . Die Höhe des Dreiecks beträgt .
Das Prisma ist hoch.
Abbildung 11: Beispielaufgabe zur Oberflächenberechnung
Berechne den Oberflächeninhalt des Prismas.
Lösung
Die Grund- und Deckenfläche des Prismas sind Dreiecke. Du musst also die Formel für den Flächeninhalt eines Dreiecks anwenden. In diesem Beispiel wird als Grundlinie die Seite c und die dazugehörige Höhe verwendet.
Als Nächstes berechnest du die Mantelfläche. Der Umfang der Grundfläche wird durch Addition der drei Seitenlängen berechnet.
Du erhältst den Oberflächeninhalt des Prismas, indem du die berechneten Werte entsprechend der Formel addierst:
Der Oberflächeninhalt des Prismas beträgt .
Wenn du mehr über die Berechnung des Oberflächeninhalts von Prismen erfahren möchtest, dann kannst du im Artikel "Oberflächeninhalt Prisma" nachlesen.
Prisma – Das Wichtigste
- Definition eines Prismas: Ein Prisma ist ein geometrischer Körper, der sich aus einer Grundfläche, einer Deckfläche und einem Mantel zusammensetzt.
- Die Grundfläche und die Deckfläche bestehen aus Vielecken, die kongruent und parallel zueinander sind.
- Der Mantel besteht aus Parallelogrammen.
- n-seitiges Prisma:
- 2n Ecken
- 3n Kanten
- n + 2 Flächen.
- Besondere Prismen:
- Gerades Prisma: Bei einem geraden Prisma verlaufen die Mantellinien senkrecht zu den Grundkanten. Die Seitenflächen sind dann Rechtecke.
- Reguläres Prisma: Ein reguläres Prisma ist ein gerades Prisma, das ein regelmäßiges Vieleck als Grundfläche hat.
- Formel für die Volumenberechnung:
- Die Grundfläche G kann bei einem Prisma unterschiedliche Formen annehmen, wie zum Beispiel Dreieck, Trapez, Quadrat oder Rechteck.
- Mit der Höhe h eines Prismas wird der Abstand der beiden Ebenen bezeichnet, in denen die Grund- und die Deckfläche liegen.
- Formel für die Oberflächenberechnung:
- Der Mantel eines geraden Prismas kann durch die Formel berechnet werden.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen