Richtungsvektor

 

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Richtungsvektor Lehrer

  • 10 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 06.12.2022
  • 10 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 06.12.2022
  • 10 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Richtungsvektor – Das klingt nach einem Vektor, der einfach eine bestimmte Richtung angibt? Die Definition des Richtungsvektors beinhaltet jedoch mehr als nur eine Richtung. So stellt er den Verbindungsvektor zwischen zwei Punkten dar und wird beispielsweise auch für die Angabe von Geraden verwenden. Wie Du ihn sowohl grafisch abgelesen, als auch über eine Formel berechnen kannst, lernst Du in dieser Erklärung kennen. Außerdem werden Dir die Unterschiede zu anderen Vektoren, wie dem Ortsvektor und dem Stützvektor gezeigt.

Richtungsvektor Definition

Ein Richtungsvektor ist eine bestimmte Art eines Vektors. Es kann ihn sowohl im zweidimensionalen als auch im dreidimensionalen Koordinatensystem geben, er hat aber in beiden die gleiche Definition. Wie der Name „Richtungsvektor“ bereits sagt, gibt dieser Vektor eine eindeutige Richtung an, allerdings beinhaltet die Definition noch weitere Charakteristiken.

Der Richtungsvektor AB ist der Vektor, der von Punkt A zu Punkt B verläuft. Er stellt die Verbindung zwischen den beiden Ortsvektoren OA und OB dar.

Richtungsvektor Definition StudySmarterAbb. 1 - Richtungsvektor Definition

Die Spitze des Richtungsvektors AB zeigt somit in die Richtung des Punktes B, ausgehend vom Punkt A.

Ortsvektor Richtungsvektor

Der Ortsvektor OA ist ein Vektor, dessen Anfangspunkt im Ursprung O und dessen Endpunkt im Punkt A liegt. Der einzige Unterschied zum Richtungsvektor ist, dass der Ortsvektor immer denselben Anfangspunkt hat, während der Richtungsvektor unterschiedliche Anfangspunkte haben kann.

Richtungsvektor Ortsvektor StudySmarterAbb. 2 - Ortsvektor OA vom Ursprung zum Punkt A

Ortsvektoren ermöglichen es, Punkte, Geraden und andere geometrische Elemente in einem Koordinatensystem zu beschreiben.

Wenn Du Dein Wissen zum Ortsvektor vertiefen möchtest, kannst Du Dir die Erklärung „Ortsvektor“ ansehen.

Im dreidimensionalen Koordinatensystem gibt es für jeden Punkt A eine x, y und z-Koordinate:

A=(xyz)Wenn Du das Beispiel aus der Definition um eine z-Koordinate erweiterst, hast Du einen Richtungsvektor im dreidimensionalen Koordinatensystem. Dieses Beispiel kannst Du im Folgenden sehen.

In Abbildung 3 siehst Du nun den Richtungsvektor AB im dreidimensionalen Koordinatensystem, der von Punkt A zu Punkt B verläuft.

Richtungsvektor Definition StudySmarterAbb. 3 - Richtungsvektor im dreidimensionalen Koordiantensystem

Richtungsvektor bestimmen

Den Richtungsvektor von Punkt A zu Punkt B kannst Du auf zwei Weisen bestimmen: rechnerisch und grafisch. Im Folgenden lernst Du beide Weisen kennen.

Richtungsvektor Formel

Um den Richtungsvektor im dreidimensionalen Koordinatensystem zu berechnen, gibt es eine Formel. Vielleicht hast Du schon mal den Spruch „Spitze minus Fuß“ gehört. Dieser findet nämlich bei der Bestimmung des Richtungsvektors seine Anwendung und kann als Merkspruch für die Richtungsvektor-Formel verwendet werden.

Um den Richtungsvektor AB von Punkt A zu Punkt B zu berechnen, subtrahierst Du den Ortsvektor OA=(axayaz) vom Ortsvektor OB=(bxbybz): AB=OBOA=(bxbybz)(axayaz)=(bxaxbyaybzaz)

Wenn Du die Koordinaten Deiner Punkte A und B, oder die Ortsvektoren OA und OB, gegeben hast, kannst Du so rechnerisch Deine Richtungsvektoren bestimmen.

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Richtungsvektor

Richtungsvektor berechnen – Beispiel

Zur Anwendung der Richtungsvektor Formel kannst Du Dir ein Beispiel anschauen:

Gegeben sind im dreidimensionalen Koordinatensystem die Punkte: A=(3|5|2)B=(1|4|1)

Gesucht ist der Richtungsvektor AB von Punkt A zu Punkt B.

Um diesen zu berechnen, wendest Du die eben gelernte Formel an:AB=OBOA=(bxbybz)(axayaz)=(bxaxbyaybzaz)

Durch die gegebenen Koordinaten können die Ortsvektoren angegeben werden: OA=(352)OB=(141)

Anhand der Formel kannst Du nun Deinen Richtungsvektor AB ausrechnen:

AB=OBOA=(141)(352)=(134512)=(211)

Dein RichtungsvektorAB beträgt also: AB=(211)

Richtungsvektor ablesen – grafisch

Eine weitere Möglichkeit ist, den Richtungsvektor grafisch zu bestimmen. Wenn der Richtungsvektor von Punkt A zu Punkt B gegeben ist, kannst Du diesen durch Verbindung der beiden Punkte einzeichnen und anschließend ablesen. Wie genau das funktioniert, lernst Du im Folgenden anhand eines Beispiels kennen.

Gegeben sind die beiden Punkte A und B in einem dreidimensionalen Koordinatensystem.

Richtungsvektor ablesen StudySmarterAbb. 4 - Richtungsvektor ablesen - Start und Endpunkt

Gesucht ist der Richtungsvektor AB von Punkt A zu Punkt B.

Um diesen ablesen zu können, zeichnest Du den Richtungsvektor als ersten Schritt ein, indem Du die beiden Punkte verbindest.

Richtungsvektor ablesen StudySmarterAbb. 5 - Richtungsvektor einzeichnen

Im nächsten Schritt überlegst Du Dir, in welche x, y und z-Richtung Du gehen müsstest, um diesen Richtungsvektor zu erhalten.

In diesem Fall gehst Du eine x-Koordinate in die positive x-Richtung und eine y-Koordinate in die positive y-Richtung, um in Richtung Punkt B zu kommen.

Richtungsvektor ablesen StudySmarterAbb. 6 - Richtungsvektor ablesen - x,y-Richtung

Nun musst Du noch schauen, wie weit Du in z-Richtung gehen musst, um B zu erreichen. In diesem Fall müsstest Du zwei z-Koordinaten in die positive z-Richtung gehen.

Richtungsvektor ablesen StudySmarterAbb. 7 - Richtungsvektor ablesen - z-Richtung

Dein Richtungsvektor lautet somit in diesem Fall: AB=(112)

Richtungsvektor ablesen StudySmarterAbb. 8 - Richtungsvektor ablesen

So konntest Du den Richtungsvektor AB durch Ablesen bestimmen.

Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen

Kostenlos registrieren
Richtungsvektor

Normierter Richtungsvektor

Richtungsvektoren, die die Verbindungsvektoren zwischen zwei Punkten A und B darstellen, haben meistens auch ganz unterschiedliche Längen. Soll mit diesen Richtungsvektoren nur eine bestimmte Richtung angegeben werden, so können diese Richtungsvektoren normiert werden, denn das Normieren ändert nur die Länge eines Vektors, nicht die Richtung.

Zur Erinnerung: ein Vektor a0 heißt normiert, wenn die Länge dieses Vektors 1 beträgt: |a0|=1.

So kann mit den Richtungsvektoren in vielen verschiedenen Aufgabentypen weitergerechnet werden. Wie Du einen Richtungsvektor normieren kannst, siehst Du im folgenden Beispiel.

Gegeben ist der Richtungsvektor AB=(211) der normiert werden soll.

Dafür berechnest Du als Erstes die Länge des Vektors AB: |AB|=(2)2+(1)2+(1)2=6

Um den Richtungsvektor nun zu normieren, teilst Du seine Koordinaten durch seine Länge:

AB0=16AB=16(211)=(261616)

Somit hast Du Deinen normierten Richtungsvektor AB0 berechnet.

Richtungsvektor Gerade

Richtungsvektoren werden außerdem bei der Bestimmung und Angabe von Geraden verwendet.

Der Richtungsvektor v einer Geraden g ist der Vektor, der in dieselbe räumliche Richtung zeigt wie diese Gerade.

Wenn die Punkte A und B zwei unterschiedliche Punkte auf der Geraden g sind, dann ist der Richtungsvektor v der Verbindungsvektor AB zwischen diesen beiden Punkten.

Richtungsvektor ablesen StudySmarterAbb. 9 - Richtungsvektor Gerade g

Achtung: Eine Gerade kann mehrere Richtungsvektoren haben, durch die jedoch immer wieder dieselbe Gerade bestimmt werden kann.

Um eine Geradengleichung in der Parameterform aufzustellen, wird neben dem Richtungsvektor außerdem der Stützvektor verwendet.

Finde relevante Lernmaterialien und bereite dich auf den Prüfungstag vor

Kostenlos registrieren
Richtungsvektor

Stützvektor Richtungsvektor

Der Stützvektor a ist der Ortsvektor OA eines Punktes A, von dem der Richtungsvektor v einer Geraden ausgeht. Er wird verwendet, um die Lage einer Geraden zu bestimmen.

Richtungsvektor Stützvektor StudySmarterAbb. 10 - Stützvektor Gerade g

Wie Du eine Geradengleichung in der Parameterform aufstellst, kannst Du Dir in der Erklärung „Geradengleichung in Parameterform“ ansehen.

Richtungsvektor – Aufgabe

Um die Anwendung von Richtungsvektoren zu üben, kannst Du die folgende Aufgabe lösen.

Aufgabe 1

Gegeben sind im dreidimensionalen Koordinatensystem die Punkte: A=(1|3|2)B=(6|4|1)Gesucht ist der Richtungsvektor AB von Punkt A zu Punkt B.

Lösung

Um diesen zu berechnen, wendest Du die Formel an:

AB=OBOA=(bxbybz)(axayaz)=(bxaxbyaybzaz)

Durch die gegebenen Koordinaten können die Ortsvektoren angegeben werden: OA=(132)OB=(641)

Anhand der Formel kannst Du nun Deinen Richtungsvektor AB ausrechnen:

AB=OBOA=(641)(132)=(614312)=(511)

Dein RichtungsvektorAB beträgt also: AB=(511)

Richtungsvektor bestimmen – Das Wichtigste

  • Der Richtungsvektor AB ist der Vektor, der von Punkt A zu Punkt B verläuft
  • Der Richtungsvektor AB stellt die Verbindung zwischen den beiden Ortsvektoren OA und OB dar
  • Den Richtungsvektor AB von Punkt A zu Punkt B berechnest Du wie folgt: AB=OBOA=(bxbybz)(axayaz)=(bxaxbyaybzaz)
  • Der Richtungsvektor kann auch grafisch abgelesen werden
  • Der Richtungsvektor v einer Geraden g ist der Vektor, der in dieselbe räumliche Richtung zeigt wie eine Gerade

Nachweise

  1. Lothar Papula (2021). Mathematische Formelsammlung. Springer Vieweg.
  2. Kohn (2012). Vektorgeometrie. tobiaskohn.ch (06.10.2022)
Lerne schneller mit den 1 Karteikarten zu Richtungsvektor

Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

Richtungsvektor
Häufig gestellte Fragen zum Thema Richtungsvektor

Was ist ein Richtungsvektor? 

Der Richtungsvektor AB ist der Vektor, der von Punkt A zu Punkt B verläuft.

Was gibt der Richtungsvektor an? 

Der Richtungsvektor AB gibt die Richtung von Punkt A zu Punkt B an.

Wo ist der Richtungsvektor? 

Der Richtungsvektor AB liegt zwischen Punkt A und Punkt B. Die Spitze des Vektors zeigt dabei zu Punkt B, ausgehend von Punkt A.

Was ist ein Stützvektor Richtungsvektor? 

Der Stützvektor ist der Ortsvektor eines Punktes A, von dem der Richtungsvektor einer Geraden ausgeht. Er wird verwendet, um die Lage einer Geraden zu bestimmen.


Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Mathe Lehrer

  • 10 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren