Vektoren subtrahieren

Vektoren können sowohl subtrahiert als auch addiert werden. In diesem Artikel geht es um die Subtraktion von Vektoren. Das Vorgehen und was die Voraussetzungen dafür sind, wird Dir im folgenden Schritt für Schritt erklärt.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Vektoren subtrahieren Lehrer

  • 5 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Vektorsubtraktion – Wann kann man Vektoren subtrahieren?

    Damit sich zwei Vektoren addieren/subtrahieren lassen, müssen sie beide die gleiche Dimension besitzen.Die Dimension eines Vektors \(\vec a\) bezeichnet die Anzahl seiner Einträge. Der Vektor \(\begin{pmatrix}1\\ 2\end{pmatrix}\) besitzt die Dimension 2.

    Vektoren subtrahieren – Graphisch und rechnerisch

    A) \[\begin{pmatrix}5 \\2\end{pmatrix}- \begin{pmatrix}3 \\1\end{pmatrix}=\begin{pmatrix}5-3 \\2-1\end{pmatrix}=\begin{pmatrix}-13 \\4\end{pmatrix}\]

    B) \[\begin{pmatrix}-8 \\11\\1\end{pmatrix}- \begin{pmatrix}5 \\7\\2\end{pmatrix}=\begin{pmatrix}-8-5 \\11-7\\1-2\end{pmatrix}=\begin{pmatrix}-13 \\4\\-1\end{pmatrix}\]

    Vektoren graphisch subtrahieren

    Die erste Variante, um zwei Vektoren \(\vec a\) und \(\vec b\) zu subtrahieren, ist graphisch. Hier zeichnest Du die beiden Vektoren, aber den zweiten mit umgedrehten Vorzeichen und verbindest dann den Fuß des einen Vektors mit der Spitze des anderen Vektors. So entsteht dann ein neuer Ergebnisvektor.

    Die Spitze eines Vektors ist das Ende des Vektors, während der Fuß, dem Beginn des Vektors entspricht.

    Schau Dir das im Folgenden genauer an:

    Stelle die Subtraktion zweier Vektoren \(\vec a = \begin{pmatrix}4\\2\end{pmatrix}\) und \(\vec b = \begin{pmatrix}3\\-1\end{pmatrix}\) graphisch dar.

    Grafische DarstellungErklärung

    Vektoren subtrahieren Vektor a StudySmarterAbbildung 1: Vektor a

    Als Erstes zeichnest Du Dir den Vektor, von dem Du subtrahieren willst, in ein Koordinatensystem ein.In diesem Fall zeichnest Du also den Vektor \(\vec a = \begin{pmatrix}4\\2\end{pmatrix}\).

    Zur Erinnerung: Bei einer Subtraktion wird die erste Zahl Minuend und die zweite Zahl Subtrahend genannt. Das Ergebnis ist dann die Differenz.

    Es gilt also:

    Minuend – Subtrahend = Differenz

    Vektoren subtrahieren Vektoren a und b StudySmarterAbbildung 2: negativer Vektor b

    Danach zeichnest Du den zweiten Vektor, den Subtrahend \(\vec b\), in das Koordinatensystem ein.Dabei solltest Du darauf achten, dass Du dort startest, wo der erste Vektor \(\vec a\) endet. Außerdem müssen die Vorzeichen des Subtrahenden durch das Minuszeichen erst noch umgekehrt werden.\(-\vec b = \begin{pmatrix}3\\-1\end{pmatrix}= \begin{pmatrix}-3\\1\end{pmatrix}\)

    Vektoren subtrahieren Vektorsubtraktion StudySmarterAbbildung 3: Vektorsubtraktion

    Im nächsten Schritt kannst du den Fuß von \(\vec a\), also des ersten Vektors, mit der Spitze von \(\vec b\), also des zweiten Vektors, verbinden. Diese Verbindung ist die Differenz und somit der "neue" Vektor.

    Dieses Vorgehen funktioniert im drei-Dimensionalen genauso.

    Achtung! Hier musst du – im Gegenteil zur Addition von Vektoren – etwas sehr Wichtiges beachten: Die Vorzeichen des Vektors müssen umgedreht werden, da du diesen subtrahieren willst und deshalb das Vorzeichen des zweiten Vektors negativ werden muss.

    Vektoren rechnerisch subtrahieren

    Die zweite Variante Vektoren zu subtrahieren ist rechnerisch. Diese Variante ist um einiges einfacher und schneller als die Variante mit dem Zeichnen. Hier musst Du jeweils die Koordinaten der beiden Vektoren miteinander subtrahieren, um die Differenz der beiden Vektoren zu erhalten.

    Subtraktion zweier Vektoren \(\vec a\) und \(\vec b\):

    \[\vec a-\vec b=\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}-\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}=\begin{pmatrix}a_1-b_1\\a_2-b_2\\a_3-b_3\end{pmatrix}\]

    beziehungsweise im zwei-dimensionalen

    \[\vec a-\vec b=\begin{pmatrix}a_1\\a_2\end{pmatrix}-\begin{pmatrix}b_1\\b_2\end{pmatrix}=\begin{pmatrix}a_1-b_1\\a_2-b_2\end{pmatrix}\]

    Berechne die Differenz der beiden Vektoren \(\vec a=\begin{pmatrix}8\\3\end{pmatrix}\) und \(\vec b=\begin{pmatrix}5\\2\end{pmatrix}\) .

    Lösung

    \[\vec a-\vec b=\begin{pmatrix}8\\3\end{pmatrix}-\begin{pmatrix}5\\2\end{pmatrix}=\begin{pmatrix}8-5\\3-2\end{pmatrix}=\begin{pmatrix}3\\1\end{pmatrix}\]

    Vektoren subtrahieren Aufgaben mit Lösungen

    In den folgenden Aufgaben kannst Du Dein Wissen testen:

    Aufgabe 1

    Berechne die Differenz der Vektoren \(\vec a=\begin{pmatrix}12\\6\end{pmatrix}\) und \(\vec b=\begin{pmatrix}3\\4\end{pmatrix}\)

    Lösung:

    \[\begin{pmatrix}12\\6\end{pmatrix}-\begin{pmatrix}3\\4\end{pmatrix}=\begin{pmatrix}12-3\\6-4\end{pmatrix}=\begin{pmatrix}9\\2\end{pmatrix}\]

    Aufgabe 2

    Berechne die Differenz der Vektoren \(\vec a=\begin{pmatrix}8\\3\\4\end{pmatrix}\) und \(\vec b=\begin{pmatrix}5\\1\\2\end{pmatrix}\)

    Lösung:

    \[\begin{pmatrix}8\\3\\4\end{pmatrix}-\begin{pmatrix}5\\1\\2\end{pmatrix}=\begin{pmatrix}8-5\\3-1\\4-2\end{pmatrix}=\begin{pmatrix}3\\2\\2\end{pmatrix}\]

    Aufgabe 3

    Berechne die Differenz der Vektoren \(\vec a=\begin{pmatrix}-3\\1\\14\end{pmatrix}\) und \(\vec b=\begin{pmatrix}2\\-3\\2\end{pmatrix}\)

    Lösung:

    \[\begin{pmatrix}-3\\1\\14\end{pmatrix}-\begin{pmatrix}2\\-3\\2\end{pmatrix}=\begin{pmatrix}-3-2\\1-(-3)\\14-2\end{pmatrix}=\begin{pmatrix}-5\\4\\12\end{pmatrix}\]

    Vektorsubtraktion Das Wichtigste

    • Vektoren müssen für die Subtraktion gleicher Art und Dimension sein.

    • Vektoren lassen sich graphisch durch Zusammensetzen der Pfeile addieren und subtrahieren

    • Für die Vektorsubtraktion gilt die folgende Rechenregel:\[\vec a-\vec b=\begin{pmatrix}a_1\\a_2\end{pmatrix}-\begin{pmatrix}b_1\\b_2\end{pmatrix}=\begin{pmatrix}a_1-b_1\\a_2-b_2\end{pmatrix}\]

    Häufig gestellte Fragen zum Thema Vektoren subtrahieren

    Was ist eine Vektorsubtraktion?

    Eine Vektorsubtraktion ist, wenn ein Vektor von einem anderen Vektor subtrahiert, also minus genommen, wird. Ein Vektor wird also von einem anderen Vektor abgezogen.

    Wann kann man Vektoren subtrahieren?

    Vektoren können subtrahiert werden, wenn sie die gleiche Struktur (Spaltenvektor oder Zeilenvektor) und die gleiche Dimension (zwei-Dimensional oder drei-Dimensional) haben.

    Kann man Vektoren subtrahieren?

    Vektoren können subtrahiert werden. Es gibt 2 Möglichkeiten die Differenz zweier Vektoren zu erhalten: zeichnerisch oder rechnerisch.

    Wie subtrahiert man zwei Vektoren?

    Zwei Vektoren können auf zwei unterschiedliche Arten subtrahiert werden: zeichnerisch und rechnerisch.

    1. Zeichnerisch wird der 1. Vektor in ein Koordinatensystem gezeichnet. Dann werden die Vorzeichen des zweiten Vektors umgekehrt und er wird an die Spitze des ersten Vektors gesetzt. Die Differenz ist der Verbindungsvektor vom Fuß des ersten Vektors zur Spitze des zweiten Vektors.

    Rechnerisch gilt:

    a - b = (a1|a2) - (b1|b2) = (a1 - b1|a2 - b2) 

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Wie nennt man die Anzahl der Einträge eines Vektors?

    Was ist der Fuß eines Vektors?

    Wie nennt man das Ergebnis einer Vektorsubtraktion?

    Weiter

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 5 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren