Zylinder

Du hast bestimmt schonmal so einen schwarzen, hohen Hut gesehen. Diese Hüte werden Zylinder genannt. 

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Zylinder Lehrer

  • 8 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Aber warum eigentlich? Weil sie im Grunde genau die gleiche Form haben, wie ein Zylinder in der Geometrie. Wenn Du mehr über geometrische Zylinder lernen willst, dann bist Du hier genau richtig.

    Zylinder Hut Zylinder StudySmarter

    In diesem Artikel erfährst Du alles, was Du über einen Zylinder wissen solltest: seine Eigenschaften, die verschiedenen Arten von Zylindern, wie Du einen Zylinder zeichnest und so weiter... Außerdem schauen wir uns alle wichtigen Flächen und Berechnungen zum Zylinder (wie z. B. das Volumen oder den Oberflächeninhalt) an.

    Zylinder Zylinder StudySmarter

    Eigenschaften des Zylinders

    Im folgenden Abschnitt wirst Du lernen, was ein Zylinder ist und was ihn von anderen Körpern unterscheidet. Auch wie Du einen Zylinder zeichnen kannst, wird Dir hier erklärt.

    Definition

    Bevor Du dich damit beschäftigen kannst, wie das Volumen oder der Oberflächeninhalt eines Zylinders berechnet werden kann, solltest Du erst einmal den Zylinder selbst ein bisschen näher anschauen.

    Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen, den Grundflächen G und D. Dazwischen sind sie mit einem rechteckigen, gerollten Mantel verbunden. Diese Fläche wird dann als Mantelfläche M bezeichnet.

    Zylinder bestehen also aus keinen Ecken, zwei Kanten (Übergänge von Kreis zu Rechteck) und drei Flächen.

    In einer Abbildung sieht ein Zylinder so aus:

    Zylinder StudySmarterAbbildung 1: Zylinder

    Flächen und Netz des Zylinders

    Wenn Du einen Zylinder ausrollst, kannst Du ihn in Grund-, Deck- und Mantelfläche zerlegen. Das wird dann das Netz eines Zylinders genannt.

    Zylinder Netz eines Zylinders StudySmarterAbbildung 2: Netz eines Zylinders

    Arten von Zylindern

    Es gibt 4 verschiedene Arten von Zylindern:

    1. gerade Zylinder
    2. schiefe Zylinder
    3. Zylinder ohne Deckfläche
    4. Hohlzylinder

    1. Gerader Zylinder

    Gerade Zylinder sind die "normalen Zylinder", die bisher in diesem Artikel beleuchtet wurden. Die Höhe h steht hier senkrecht auf der Grundfläche G.

    Wenn in diesem Artikel von einem Zylinder gesprochen wird, dann ist der gerade Zylinder gemeint.

    Zylinder Zylinder mit senkrechter Höhe StudySmarterAbbildung 3: Zylinder mit senkrechter Höhe

    2. Schiefer Zylinder

    Schiefe Zylinder sind genauso aufgebaut wie gerade Zylinder auch, jedoch besteht deren Mantelfläche aus einem Parallelogramm und keinem Rechteck, wodurch der Zylinder schief ist. Der Mittelpunkt der Deckfläche D steht hier nicht senkrecht auf dem Mittelpunkt der Grundfläche G.

    Zylinder schiefer Zylinder StudySmarterAbbildung 4: Schiefer Zylinder

    Der einzige Unterschied zwischen einem geraden Zylinder und einem schiefen Zylinder liegt in der Ermittlung der Höhe. Hier ist die Höhe das Lot, welches den Mittelpunkt der Deckfläche mit der Grundfläche verbindet.

    Du kannst Dir das so vorstellen: Jetzt musst Du, um die Höhe zu ermitteln, eine senkrechte Linie vom Mittelpunkt der Deckfläche ziehen. Dann verlängerst du die Grundfläche. Diese beiden Strecken treffen sich dann an einem Punkt in einem 90° Winkel. Die Länge der Strecke zwischen dem Mittelpunkt der Deckfläche und der verlängerten Grundfläche entspricht der Höhe.

    Das hört sich komplizierter an, als es ist. In einer Zeichnung verstehst Du schnell, was gemeint ist.

    Zylinder schiefer Zylinder StudySmarterrAbbildung 5: Schiefer Zylinder mit Höhe


    Unabhängig davon, ob der Zylinder schief ist, kann die Formel zur Berechnung des Volumens V eines geraden Zylinders verwendet werden.

    3. Zylinder ohne Deckfläche

    Eine weitere Art von Zylinder sind Zylinder ohne Deckfläche. Das bedeutet, dass sie oben sozusagen offen sind.

    Zylinder Zylinder ohne Deckfläche StudySmarterAbbildung 6: Zylinder ohne Deckfläche

    Um den Oberflächeninhalt O eines Zylinders ohne Deckfläche D zu berechnen, muss der Oberflächeninhalt O eines "normalen" Zylinders berechnet werden, aber mit nur einer Kreisfläche, da die andere ja fehlt.

    Für den Oberflächeninhalt O eines Zylinders ohne Deckfläche D gilt:

    4. Hohlzylinder

    Hohlzylinder sind Zylinder, die in der Mitte ein Loch haben. Im Prinzip bestehen sie aus zwei Zylindern: Einer, der außen liegt und gefüllt ist und einer, der innerhalb des anderen Zylinders liegt, mit der gleichen Höhe, aber einem kleineren Radius/Umfang und hohl ist.

    Zylinder Hohlzylinder StudySmarterAbbildung 7: Hohlzylinder

    Aufgrund dessen werden das Volumen V und der Oberflächeninhalt O anders, als bei einem geraden Zylinder berechnet.

    Für das Volumen V von Hohlzylindern gilt:

    Für den Oberflächeninhalt O eines Hohlzylinders gilt:

    Schrägbild eines Zylinders zeichnen

    Jetzt weißt Du, was ein Zylinder ist und was ihn ausmacht. Im Folgenden findest Du eine Anleitung, wie Du ihn zeichnen kannst.

    ZeichnungAnleitung

    Zylinder Schritt 1 Zylinder zeichnen StudySmarterAbbildung 8: Zylinder zeichnen Schritt 1

    Zeichne eine waagrechte Linie mit der Länge des Durchmessers. Markiere Dir die Mitte dieser Strecke mit einem Punkt und beschrifte diesen mit (Mittelpunkt der Grundfläche).

    Zylinder Schritt 2 Zylinder zeichnen StudySmarterAbbildung 9: Zylinder zeichnen Schritt 2

    Zeichne jetzt eine senkrechte Linie durch den Mittelpunkt mit der Länge des Radius (Je die Hälfte der Länge des Radius auf jeder Seite).

    Zylinder Schritt 3 Zylinder zeichnen StudySmarterAbbildung 10: Zylinder zeichnen Schritt 3

    Verbinde die vier Enden zu einem verzogenen Kreis beziehungsweise einer Ellipse.

    Zylinder Zylinder zeichnen Schritt 4 StudySmarterAbbildung 11: Zylinder zeichnen Schritt 4

    Am rechten und linken Ende zeichne eine senkrechte Linie nach oben mit der Länge der Höhe des Zylinders ein.

    Zylinder Schritt 5 Zylinder zeichnen StudySmarterAbbildung 12: Zylinder zeichnen Schritt 5

    Verbinde diese beiden Enden oben mit einer waagrechten Linie. Setzte auch hier wieder einen Punkt in der Mitte der Strecke und beschrifte ihn mit (Mittelpunkt der Deckfläche).

    Abbildung 13: Zylinder zeichnen Schritt 6Abbildung 13: Zylinder zeichnen Schritt 6

    Als Nächstes zeichnest Du wieder eine waagrechte Linie durch den oberen Mittelpunkt mit der Länge des Radius (halber Radius zu jeder Seite).

    Zylinder Zylinder zeichnen Schritt 7 StudySmarterAbbildung 14: Zylinder zeichnen Schritt 7

    Verbinde die vier oberen Enden zu einem Kreis beziehungsweise einer Ellipse.

    Zylinder Zylinder zeichnen Schritt 8 StudySmarterAbbildung 15: Zylinder zeichnen Schritt 8

    Zum Schluss kannst Du alle Linien, die Du nur für das Zeichnen gebraucht hast, wegradieren.

    Berechnen des Volumens eines Zylinders

    Die Formel zur Berechnung des Volumens eines Zylinders setzt sich zusammen aus einer allgemeinen Formel:

    In diesem Fall ist die Grundfläche ein Kreis, weshalb G mit dem Flächeninhalt eines Kreises ersetzt werden kann.

    Die Formel zur Berechnung des Volumens V eines Zylinders lautet:

    oder auch

    Für die Formel brauchst Du den Radius r oder den Durchmesser d, die Höhe h und die Kreiszahl π, welche ungefähr 3,41 beträgt.

    Wenn Du mehr zum Thema Volumen eines Zylinders erfahren willst, dann lese Dir doch unseren Artikel dazu durch. Dort findest Du genauere Informationen und Anwendungsbeispiele.

    Die Mantelfläche eines Zylinders

    Wie bereits erwähnt erhältst Du unter anderem die Mantelfläche, wenn Du einen Kegel zerlegst. Diese Mantelfläche kann berechnet werden. Aber schaue Dir erst einmal genauer an, was die Mantelfläche überhaupt ist.

    Die Mantelfläche wird in Rechnungen meistens mit dem Großbuchstaben M ausgedrückt. Da sie die Form eines Rechtecks besitzt, kann sie auch wie ein solches berechnet werden.

    Zylinder Mantelfläche StudySmarterAbbildung 16: Mantelfläche Zylinder

    In diesem Fall entspricht die Seite a dem Umfang U und die Seite b der Höhe h des Zylinders.

    Für die Mantelfläche M eines Zylinders gilt:

    Wenn Du Beispielaufgaben oder eine genauere Herleitung der Mantelfläche sehen möchtest, dann lese Dir doch unseren Artikel zum Thema Oberflächeninhalt eines Zylinders durch.

    Berechnen des Oberflächeninhalts eines Zylinders

    Die Formel für den Oberflächeninhalt O setzt sich zusammen aus der Summe der Einzelflächen des Zylinders. Wie Du oben gesehen hast, besteht ein Zylinder aus drei Flächen: der rechteckigen Mantelfläche M, der kreisförmigen Deckfläche D und der gleich großen Grundfläche G. Wenn Du den Flächeninhalt der Flächen addierst, erhältst Du die Formel für den Oberflächeninhalt.

    Für den Oberflächeninhalt O eines Zylinders gilt:

    oder

    Dabei ist O der Oberflächeninhalt, π die Kreiszahl, r der Radius und h die Höhe eines beliebigen Zylinders.

    Wenn Du mehr zum Thema Oberflächeninhalt eines Zylinders erfahren willst, dann lese Dir doch unseren Artikel dazu durch. Dort findest Du genauere Informationen und Anwendungsbeispiele.

    Formelsammlung zum Zylinder

    Zur Übersicht wurden in der folgenden Tabelle alle Formeln, die Du zur Berechnung eines Kegels brauchen könntest, zusammengefasst. Falls Du mal nicht weiterkommst, kannst Du Dich hier orientieren.

    Zur Referenz ist hier nochmal ein beschrifteter Zylinder abgebildet, sodass Du sehen kannst, was die einzelnen Größen nochmal bedeuten.

    Zylinder beschrifteter Zylinder StudySmarterAbbildung 17: beschrifteter Zylinder

    ParameterFormel
    Durchmesser d
    Umfang U
    Grundfläche G/Deckfläche D
    Mantelfläche M
    Oberflächeninhalt O
    Volumen V

    Zylinder Das Wichtigste auf einen Blick

    • Ein Zylinder besteht aus einer rechteckigen Mantelfläche, einer kreisförmigen Grundfläche G und einer kongruenten Deckfläche D
    • Es gibt gerade Zylinder, schiefe Zylinder, Zylinder ohne Deckfläche und Hohlzylinder
    • Bei schiefen Zylindern steht die Höhe h nicht senkrecht auf der Grundfläche G
    • Für den Oberflächeninhalt eines Zylinders ohne Deckfläche gilt:
    • Dadurch, dass Hohlzylinder im Grunde aus zwei Zylindern bestehen, wird ihr Volumen und ihr Oberflächeninhalt anders berechnet
      • Für das Volumen V gilt:
      • Für den Oberflächeninhalt O gilt:
    • Die Mantelfläche eines Kegels ist ein Rechteck
    • Für die Mantelfläche M gilt:
    • Für das Volumen V eines Zylinders gilt:
    • Für den Oberflächeninhalt O eines Zylinders gilt:
    Lerne schneller mit den 0 Karteikarten zu Zylinder

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Zylinder
    Häufig gestellte Fragen zum Thema Zylinder

    Was ist ein Zylinder einfach erklärt?

    Ein Zylinder ist eine geometrische Figur, die vom Aussehen einem Zauberhut gleicht.


    Er besteht aus zwei parallelen, ebenen, kreisförmigen Flächen (Grundflächen) oben und unten. Dazwischen ist er mit einem rechteckigen, gerollten Mantel (Mantelfläche) verbunden. 

    Was sind die Eigenschaften eines Zylinders?

    Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen (Grund- und Deckfläche). Dazwischen befindet sich eine rechteckige, gerollte Mantelfläche. Sie bestehen aus keinen Ecken, zwei Kanten (Übergänge von Kreis zu Rechteck) und drei Flächen.

    Wie ist ein Zylinder aufgebaut?

    Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen (Grund- und Deckfläche). Dazwischen sind sie mit einem rechteckigen, gerollten Mantel verbunden. Diese Fläche wird dann als Mantelfläche bezeichnet.

    Wie zeichnet man einen Zylinder im Schrägbild?

    1. Zeichne eine waagrechte Linie mit der Länge des Durchmessers. Markiere dir die Mitte dieser Strecke mit einem Punkt und beschrifte diesen mit MG (Mittelpunkt der Grundfläche).
    2. Zeichne jetzt eine senkrechte Linie durch den Mittelpunkt mit der Länge des Radius (Je die Hälfte der Länge des Radius auf jeder Seite).
    3. Verbinde die vier Enden zu einem Kreis beziehungsweise einer Ellipse.
    4. Am rechten und linken Ende zeichne eine senkrechte Linie nach oben mit der Länge der Höhe des Zylinders ein.
    5. Verbinde diese beiden Enden oben mit einer waagrechten Linie. Setzte auch hier wieder einen Punkt in der Mitte der Strecke und beschrifte ihn mit MD (Mittelpunkt der Deckfläche).
    6. Als Nächstes zeichnest du wieder eine waagrechte Linie durch den oberen Mittelpunkt mit der Länge des Radius (halber Radius zu jeder Seite).
    7. Verbinde die vier oberen Enden zu einem Kreis beziehungsweise einer Ellipse.
    8. Zum Schluss kannst du alle Linien, die du nur für das Zeichnen gebraucht hast wegradieren.
    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 8 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren