Springe zu einem wichtigen Kapitel
Modalwert – Statistik Erklärung
Wenn Du in der Statistik Daten auswerten willst, stößt Du auf die Lagemaße Modalwert, Median, Quartile und Mittelwert. Sie alle dienen dazu, Dir einen Überblick zu verschaffen.
Wenn Dich die anderen Lagemaße auch interessieren, klicke einfach auf den Namen.
Modus/Modalwert Definition
Der Modalwert oder Modus ist also eines der Lagemaße der Statistik.
Der Modus oder Modalwert gibt an, welche Werte oder Merkmale in einer Datenreihe am häufigsten vorkommen. Kommen zwei Merkmale gleich oft vor, ist die Datenreihe bimodal, bei mehr als zwei Merkmalen ist sie multimodal.
In einem Diagramm kannst Du den Modalwert meist auf einen Blick erkennen, denn er ist an der Stelle des größten Ausschlags.
Modalwert berechnen Formel
Der Modalwert kann allerdings nicht berechnet werden, dementsprechend gibt es auch keine Formel.
Um den Modus/Modalwert einer Datenreihe zu finden, sortierst Du die Werte der Datenreihe in aufsteigender Reihenfolge, sodass Du gleiche Werte/Merkmale zählen kannst. Der Wert, der am häufigsten vorkommt, ist der Modalwert.
Um das Beispiel aus der Einleitung zu beantworten: Die Person, die die meisten Stimmen bekommt, repräsentiert den Modalwert. Steht es unentschieden zwischen zwei Personen, so ist die Wahl bimodal, bei drei oder mehr Personen multimodal.
Modalwert – Beispiel
Mit dieser Einführung kannst Du den Modalwert nun anwenden. Es gibt zwei Möglichkeiten bei der Anwendung: Dir kann entweder ein Diagramm gegeben sein, das Du auswerten sollst, oder Du bestimmst den Modalwert aus einer Datenreihe.
Modus aus Diagramm bestimmen
Für den Anfang soll der Modus aus einem Diagramm ausgelesen werden.
In einer bekannten Quiz-Show werden die Zuschauer regelmäßig mit dem Modus konfrontiert. Wenn ein Kandidat das gesamte Publikum um Hilfe fragt, dürfen alle Personen im Publikum ihre Vermutung der richtigen Lösung abgeben. Das Ergebnis dieser Abstimmung bei einem Publikum mit 110 Personen könnte zum Beispiel so aussehen:
In der Regel vertraut der Kandidat der Mehrheit und nimmt die Antwort, die am häufigsten gewählt wurde. Und genau das ist der Modus. In diesem Fall handelt es sich beim Modus um Antwort Nummer 3, da hier das Maximum des Diagramms ist.
Auch bei anderen Entscheidungsprozessen im Alltag wird häufig, ohne es bewusst zu merken, der Modus gewählt.
Modus aus Datenreihe ermitteln
Auch aus einer Reihe von Daten kannst Du den Modalwert bestimmen. Meist sind Dir die Daten in einer Liste oder Tabelle gegeben.
Werden die 110 Personen der Quizshow auf 11 Personen reduziert, so ergibt sich folgende Datenreihe:
3 | 2 | 3 | 3 | 1 | 4 | 2 | 3 | 4 | 2 | 3 |
So kannst Du mit den Zahlen aber noch nicht viel anfangen. Sie müssen zuerst in eine Reihenfolge gebracht werden.
1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 |
Nun kannst Du die Werte vergleichen und prüfen, welche Zahl am häufigsten vorkommt.
1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 |
Du siehst, dass die 3. Antwort mit einer Stimmenanzahl von 5 am häufigsten gewählt wurde. Der Modalwert liegt also auf der 3. Antwort.
In diesem Beispiel gab es nur einen Modus. Wie sieht es aber aus, wenn sich die Zuschauer nicht einig sind und die Verteilung der Stimmen anders ist?
Bimodal und multimodal
In diesem Fall kann es passieren, dass es nicht nur einen Modus gibt, sondern mehrere.
Angenommen, die Auswertung der Stimmen sähe folgendermaßen aus:
Hier gibt es zwei Balken, die gleich hoch sind und somit beide ein Maximum darstellen. Es gibt also zwei Modalwerte, nämlich Antwort 2 und 3. Die Verteilung ist somit bimodal.
Bei drei oder mehr gleich hohen, maximalen Balken wäre die Verteilung multimodal. Somit würde diese Verteilung bei einer Entscheidung nicht mehr helfen.
Dadurch stellt sich die Frage, wann die Bestimmung eines Modalwerts sinnvoll ist und wann nicht.
sinnvoll bei: | nicht sinnvoll bei: |
Verteilungen mit Normalskalenniveau → Zentrum der Verteilung (Modus) lässt sich gut bestimmen | gleich verteilten Daten → viele Modi, somit keine brauchbaren Informationen |
Wenn möglich, sollte niemals ein einziges Lagemaß für das Zentrum einer Verteilung verwendet werden, da sich Median, Mittelwert und Modus ergänzen und in Kombination die höchste Aussagekraft haben.
Modalwert – Aufgaben mit Lösung
Nun kannst Du Dich selbst auf die Suche nach dem Modus machen. Viel Spaß!
Aufgabe 1
10 Schüler einer Klasse werden nach ihrer Lieblingssportart befragt. Hier siehst Du das Ergebnis der Umfrage:
Schüler | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Sportart | Fußball | Schwimmen | Volleyball | Fußball | Fußball | Basketball | Fußball | Reiten | Schwimmen | Fußball |
Lösung
Es bietet sich an, die gleichen Sportarten zu gruppieren, um einen besseren Überblick zu haben:
Schüler | 1 | 4 | 5 | 7 | 10 | 2 | 9 | 3 | 6 | 8 |
Sportart | Fußball | Fußball | Fußball | Fußball | Fußball | Schwimmen | Schwimmen | Volleyball | Basketball | Reiten |
Jetzt kannst Du sehen, dass die Mehrheit der Schüler Fußball spielt. Hier liegt also der Modus. Da die anderen Sportarten nicht so oft ausgeübt werden, gibt es in dieser Verteilung auch nur einen Modus.
Aufgabe 2
Ein Lehrer teilt seiner Schulklasse die Noten für die letzte Klassenarbeit mit. Der Lehrer gibt den Schülern aber nicht genau an, welche Note wie häufig vergeben wurde. Stattdessen zeichnet er diese Verteilung an die Tafel:
Lösung
Ohne die genauen absoluten Häufigkeiten zu kennen, kannst Du dennoch sehen, dass die Säule der Note 2 am höchsten ist. Der Modus liegt also bei 2, da diese Note am häufigsten vergeben wurde.
Aufgabe 3
Der Lehrer aus Aufgabe 2 unterrichtet auch die Parallelklasse. In dieser Klasse fällt die gleiche Arbeit ein wenig anders aus. Die dazugehörige Verteilung siehst Du hier:
Lösung
In dieser Klasse gibt es drei Modi, nämlich die Noten 2, 3 und 4, denn sie wurden in gleicher Anzahl vergeben. Diese Verteilung ist also multimodal.
Modalwert – Das Wichtigste
- Der Modus ist ein Lagemaß der deskriptiven Statistik. Er ist der Wert in der Datenreihe, der am häufigsten vorkommt.
- Um den Modus zu ermitteln, brauchst Du keine Formel. Du kannst in aus der (sortierten) Datenreihe oder dem Diagramm ablesen.
- Hat eine Datenreihe zwei oder mehr Modalwerte, so ist sie bimodal oder multimodal.
Nachweise
- Hassler (2018). Statistik im Bachelor-Studium Eine Einführung für Wirtschaftswissenschaftler. Springer Fachmedien Wiesbaden.
- Behrends (2012). Elementare Stochastik Ein Lernbuch - von Studierenden mitentwickelt. Vieweg+Teubner Verlag.
- Meintrup, Schäffler (2006). Stochastik Theorie und Anwendungen. Springer Berlin Heidelberg.
Lerne mit 3 Modalwert Karteikarten in der kostenlosen StudySmarter App
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Modalwert
Ist Modus und Modalwert das gleiche?
Ja. Beide Begriffe stehen für den Wert in einer Datenreihe, der am häufigsten vorkommt.
Was ist der Modalwert?
Der Modalwert ist der Wert, der in einer Datenreihe am häufigsten vorkommt.
Wann benutzt man den Modalwert?
Der Modalwert ist bei Verteilungen mit Normalskalenniveau sinnvoll. Also bei Verteilungen, die ein Maximum aufweisen.
Wie berechnet man den Modalwert?
Den Modalwert kannst Du nicht berechnen. Du kannst ihn entweder aus einem Diagramm ablesen oder aus einer Datenreihe durch Abzählen bestimmen.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr