Radioaktivität
Der Geigerzähler spielt eine wichtige Rolle in Forschungen und Messungen im Bereich der Radioaktivität.
Radioaktivität ist die Eigenschaft von instabilen Kernen, auch Radionuklide genannt, energiereiche Strahlung spontan auszusenden.
Die Kerne emittieren dabei überwiegend α- und β-Teilchen oder Strahlungsenergie in Form von γ-Strahlung. Es kommt auf den jeweiligen Stoff an, welche Art von Teilchen oder Strahlung ausgesendet wird.
Falls Du mehr über das Thema Radioaktivität wissen möchtest oder Dein Wissen darüber etwas auffrischen willst, dann schau Dir die Erklärungen zu dem Thema an.
Um zu bestimmen, ob und in welcher Form radioaktive Strahlung auftritt, werden sogenannte Detektoren verwendet. Das sind Messgeräte, die aufgrund ihres speziellen Aufbaus die Strahlung detektieren und auswerten können. Eines dieser Messgeräte ist das Geiger-Müller-Zählrohr.
Geiger-Müller-Zählrohr Definition
Das Geiger-Müller-Zählrohr, auch bekannt als Geigerzähler oder kurz GMZ, wurde von Walter Müller im Jahr 1928 entwickelt und prägte die Radioaktivitätsforschung, denn es ist eines der ersten Messgeräte zum Nachweis von energiereicher Strahlung.
Das Geiger-Müller-Zählrohr ist ein Strahlungs- und Teilchendetektor, welcher zum Nachweis von ionisierter Strahlung genutzt wird. Durch Messung der radioaktiven Strahlung kann auch die Strahlungsart (z.B. α- oder β-Strahlung) bestimmt werden.
Die Nachweismethodik beruht auf der Wirkung der ionisierten Strahlung, Elektronen aus ihren Schalen herauszustoßen und Atome infolgedessen zu ionisieren.
Geiger-Müller-Zählrohr einfach erklärt
Wie radioaktiv ein Stoff ist, d.h. wie viel Strahlung pro Zeiteinheit ausgesendet wird, kann durch bestimmte Detektoren ermittelt werden. Einer der wichtigsten Detektoren ist dabei das Geiger-Müller-Zählrohr.
Geiger-Müller-Zählrohr Aufbau
Um das Vorkommen von radioaktiver Strahlung mit möglichst geringer Messunsicherheit überprüfen zu können, benötigt der Geigerzähler einen speziellen Aufbau.
Der einfachste Aufbau eines Geiger-Müller-Zählrohrs besteht aus einem zylindrischen Rohr, welches auf beiden Seiten verschlossen ist und als Kathode agiert. In der Achse des Rohrs befindet sich ein dünner Draht, der als Anode dient und am Ende durch einen Isolator aus dem Zählrohr führt.
Du kannst Dir eine Kathode wie einen negativ geladenen Pol vorstellen, durch den die Elektronen in das Gerät fließen. Deswegen besitzt sie einen Elektronenüberschuss und ist folglich negativ geladen. Analog dazu funktioniert die Anode, nur dass sie Elektronen aufnehmen kann und deswegen einen Elektronenmangel aufweist, also wie ein positiv geladener Pol agiert.
Am Eingang des Rohrs ist ein durchlässiges Glimmfenster befestigt, das für α- oder β-Strahlung durchlässig ist. Dadurch gelangt die Strahlung ins Rohr. Dort wird ein Edelgas unter geringem Druck eingeführt, das mit der einfallenden Strahlung wechselwirken kann.
Edelgas bildet keine negativen Ionen, die sich langsamer als Elektronen Richtung Draht bewegen. Dadurch werden möglichst kurze Impulse erzeugt.
Zur Detektion der radioaktiven Strahlung wird ein Zähler verwendet, der an eine Spannungsquelle und einen Widerstand R angeschlossen ist.
Geiger-Müller-Zählrohr Funktionsweise
Die durch das Glimmfenster einfallende radioaktive Strahlung trifft im Rohr auf die Edelgasatome und ionisiert sie. Die Elektronen werden dabei aus ihren Schalen herausgelöst und dann zum positiven Draht beschleunigt.
Auf dem Weg zur Anode regen die Elektronen weitere Atome zur Emission von Photonen an. Diese lösen basierend auf dem Prinzip des Photoeffekts, der das Lösen eines Elektrons aus seiner Schale durch Absorption eines Photons beschreibt, weitere Elektronen heraus. Die Vielzahl der plötzlich herausgelösten Elektronen erzeugt eine daraus resultierende sogenannte Elektronenlawine, die Du Dir wie eine Schneelawine vorstellen kannst.
Da immer mehr Elektronen Richtung Anode beschleunigen, sammelt sich allmählich ein Stromfluss von Elektronen an. Der Strom wird entlang des positiv geladenen Drahts abgeführt, fließt über den Widerstand R und erzeugt über den Zähler detektierbare Spannungsimpulse.
Die Menge der Zählimpulse definiert die Anzahl der detektierten Teilchen, wobei gilt, je länger die Messung, desto präziser die Ermittlung der Zählrate (gemessene Teilchen pro Minute).
Ausgegeben werden die Resultate schließlich über die Zählrate oder als Gesamtmessung über einen bestimmten Zeitraum.
Ein Geigerzähler detektiert auch ohne inkludierten radioaktivem Präparat Strahlung. Dies hängt von den örtlichen Bedingungen ab, da nicht nur radioaktive Stoffe ionisierende Strahlung aussenden.
Der Geigerzähler kann aber Messungen nicht ununterbrochen durchführen. Ab einem bestimmten Punkt spricht das Zählrohr auf keine weitere Teilchen an und kann somit für eine gewisse Zeit nichts mehr messen.
Geiger-Müller-Zählrohr Totzeit und Erholungszeit
Sobald die Gasentladung ausgelöst wurde, unterbricht der Geigerzähler unmittelbar danach die Messung und ist für einen kurzen Zeitraum (ca. 0,1 Millisekunden) praktisch "tot".
Die Totzeit ist die Zeit, in der das Geiger-Zählrohr unempfänglich für weitere Spannungsimpulse ist und folglich keine weiteren Teilchen mehr detektieren kann.
Sie entsteht durch die Tatsache, dass sich Atome zu positiven Ionen umwandeln, wenn sich Elektronen abspalten. Es entstehen entsprechend viele positive Ionen, die aufgrund ihrer positiven Ladung in entgegengesetzter Richtung zur Kathode wandern.
Da diese jedoch deutlich langsamer sind als die Elektronen, erzeugen sie eine Art positiven Schirm um den Draht und schwächen somit das elektrische Feld im Inneren. Freie Elektronen werden für eine kurze Zeit nicht mehr zum Draht beschleunigt und erreichen diesen somit nicht.
Es kommt zum Stillstand des Stromflusses und Spannungsimpulse und folglich zur Unterbrechung der Messung, weil die Elektronenlawine letztendlich zerbricht.
Erst nachdem die positiven Ionen die Kathode erreicht haben, können weitere Teilchen detektiert werden. Jedoch beginnt der Geigerzähler nach Ende der Zeit nicht sofort wieder mit der Messung, denn dieser muss sich zunächst "erholen", bis es wieder Teilchen detektieren kann.
Die Zeit, die zwischen dem Ende der Totzeit und Beginn des ersten detektierten Signal vergeht, ist auch bekannt als die Erholungszeit.
Durch die auftretende Totzeit können Messabweichungen entstehen. Diese können jedoch anhand einer Formel korrigiert werden.
Um mögliche Messfehler zu minimieren, kann anhand der folgenden Formel eine Korrektur vorgenommen werden:
M' beschreibt hierbei die gemessene Zählrate, T die Totzeit und M die daraus korrigierte Zählrate
Jetzt stellt sich schließlich noch die Frage, warum auch nach vielen vergangenen Jahren in einem verseuchten Gebiet wie Tschernobyl radioaktive Strahlung mit dem Geigerzähler detektiert wird.
Geiger-Müller-Zähler Anwendung
Anwendung findet der Geigerzähler vorwiegend im Bergbau sowie im Umwelt- und Strahlenschutz. Dabei steht im Vordergrund meist nicht die Art der Strahlung zu detektieren, sondern schädliche Radioaktivität nachzuweisen, um Arbeiter zu schützen.
Sowohl damals als auch heute werden die radioaktiven Überreste im Katastrophengebiet Tschernobyl oder in ähnlich kontaminierten Gebieten durch Geiger-Müller-Zählrohre nachgewiesen.
Aufgrund der langen Halbwertszeit der im Gebiet befindlichen radioaktiven Stoffe werden Detektoren wie der Geigerzähler auch in Zukunft noch eine wichtige Rolle in der Detektion von radioaktiver Strahlung und damit zur Erhaltung der Sicherheit der Menschen spielen.
Geiger-Müller-Zählrohr - Das Wichtigste
- Das Geiger-Müller-Zählrohr ist ein Messgerät zum Nachweis von radioaktiver Strahlung.
- Durch die ionisierte Strahlung werden Elektronen aus ihren Schalen gelöst, die sich Richtung Anode bewegen.
- Die Elektronen erreichen die Anode und bilden somit im Draht und durch den Widerstand einen Stromfluss.
- Der Stromfluss bedeutet Spannungsimpulse, welche vom Zähler gemessen werden können.
- Die Zählrate gibt die Anzahl der detektierten Teilchen an.
- Anwendung des Geigerzählers findet überwiegend im Bergbau sowie im Umwelt- und Strahlenschutz statt.
Nachweise
- Sebastian Korf (2013) How the Geiger Counter started to crackle: Electrical counting methods in early radioactivity research
- schulentwicklung.nrw.de: Geiger-Müller-Zählrohr (26.06.2022)
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen