Springe zu einem wichtigen Kapitel
Nicht harmonische Schwingung Definition und Eigenschaften
Eine einfache Schwingung ist dadurch definiert, dass ein Körper sich periodisch hin und her um eine Ruhelage bewegt. Da der Körper mit einer gleichbleibenden Frequenz schwingt, wird dies auch als harmonische Schwingung bezeichnet. Aber was ist eine nicht harmonische Schwingung?Eine nicht harmonische Schwingung liegt vor, wenn die Frequenz der Schwingung nicht konstant ist oder die Schwingung nicht sinusförmig erfolgt. Hierbei kann die Oszillation auch über die Zeit variiert werden, was zu unterschiedlichen Schwingungsformen und Frequenzen führt.
- Die Frequenz der Schwingung kann sich mit der Zeit ändern.
- Die Amplitude der Schwingung kann variieren.
- Die Periodendauer ist nicht konstant.
Ein gutes Beispiel für eine nicht harmonische Schwingung wäre ein Pendel, das stark ausgelenkt wird. In diesem Fall ist die Bewegung des Pendels nicht mehr sinusförmig, und die Periodendauer der Schwingung ändert sich von Schwingung zu Schwingung leicht.
Unterschied zwischen harmonischer und nicht harmonischer Schwingung
Obwohl sowohl harmonische als auch nicht harmonische Schwingungen in vielen Bereichen der Physik Anwendung finden, gibt es wesentliche Unterschiede zwischen beiden.Ein wichtiges Unterscheidungsmerkmal ist die Periodendauer und die Form der Schwingung. Bei einer harmonischen Schwingung bleibt die Periodendauer konstant. Bei einer nicht harmonischen Schwingung kann sich die Periodendauer ändern. Zudem ist die Schwingungsform bei einer harmonischen Schwingung sinusförmig, während sie bei einer nicht harmonischen Schwingung variiert werden kann.
Kenngrößen einer Schwingung zur Unterscheidung
Es gibt verschiedene Kenngrößen, die zur Unterscheidung zwischen einer harmonischen und einer nicht harmonischen Schwingung herangezogen werden können:Kenngröße | Harmonische Schwingung | Nicht harmonische Schwingung |
Frequenz | konstant | ändert sich |
Periodendauer | konstant | ändert sich |
Schwingungsform | sinusförmig | abweichend von einer Sinuskurve |
Formel der Nicht harmonischen Schwingung
In der Physik ermöglichen uns mathematische Formulierungen, das Verhalten von Naturphänomenen genau zu beschreiben, zu verstehen und vorherzusagen. Eine nicht harmonische Schwingung ist keine Ausnahme.Die grundlegende Formel für eine nicht harmonische Schwingung kann wie folgt ausgedrückt werden: \[ A(t) = A_0 \cdot e^{-\gamma \cdot t} \cdot \cos(\omega \cdot t + \phi) \] Bei dieser Formel repräsentiert \(A(t)\) die Amplitude zur Zeit \(t\), während \(A_0\) die Anfangsamplitude darstellt und \(\gamma\) den Dämpfungsfaktor der Schwingung. Der Term \(\cos(\omega \cdot t + \phi)\) repräsentiert die Verzögerung der Schwingung, wobei \(\omega\) die Kreisfrequenz und \(\phi\) die Anfangsphase sind. Die Auswirkungen dieser Variablen auf die Schwingung ermöglichen eine breite Palette von Schwingungsmustern. Zu beachten ist, dass die Amplitude über die Zeit abnimmt, was auf den Dämpfungsfaktor \(\gamma\) zurückzuführen ist. Dies kann z.B. Reibung oder Widerstand sein, die die Bewegung des schwingenden Körpers beeinflussen und dadurch Energie abgebaut wird.Nicht harmonische Schwingungen sind also stark von Dämpfung und Anfangsbedingungen abhängig und können verschiedene Formen annehmen, abhängig von den eingesetzten Variablen in der Formel.
Zum Beispiel lässt sich die Bewegung einer Feder, die an ein Gewicht angehängt und gestreckt wird, mit der Formel der nicht harmonischen Schwingung genau beschreiben. Durch die bestimmte Auslenkung und die anschließende Freigabe der Feder führt das Gewicht eine gedämpfte Schwingung aus, bei der die Amplitude im Laufe der Zeit abnimmt.
Anwendung der Nicht harmonischen Schwingung Formel
Die vorgestellte Formel wird in vielen naturwissenschaftlichen und technischen Bereichen rege angewandt. Sie findet beispielsweise Anwendung in der Mechanik, Optik, Elektrotechnik und Akustik.- Mechanik: Hier sind nicht harmonische Schwingungen wichtig bei der Untersuchung der Bewegung von Pendeln oder Federn, insbesondere dann, wenn Reibung und Luftwiderstand eine Rolle spielen.
- Optik: Untersuchungen des Verhaltens von Lichtwellen, die durch verschiedene Medien propagieren.
- Elektrotechnik: Die Formel ist nützlich bei der Beschreibung von gedämpften Schwingkreisen oder Generatoren.
- Akustik: Beschreibung des Ausklingens von Tönen unterschiedlicher Instrumente.
Nicht harmonische Schwingung Cosinus und ihre Anwendung
In der nicht harmonischen Schwingung macht der Cosinus-Anteil in der Formel das Phänomen der Phasenverschiebung deutlich. Die Funktion \(\cos(\omega \cdot t + \phi)\) zeigt, dass die Schwingung nicht unbedingt bei 0 beginnen muss - vielmehr kann sie eine Anfangsphase \(\phi\) aufweisen. Diese Art von Schwingung findet in vielen realen Phänomenen Anwendung. Beispielsweise beeinflussen Schwingungen Luftdruckebenen, was wiederum Tonschwingungen in der Luft erzeugt. Hier kann die Einführung einer Phasenverschiebung dazu fühgen, dass sich die Tonschwingungen überlagern und Interferenzen entstehen.Hierbei gilt zu beachten, dass eine Phasenverschiebung von +90° oder -90° die nicht harmonische Schwingung von einer Cosinus- in eine Sinusform, bzw. umgekehrt, verändert.
Beispiele für nicht harmonische Schwingungen
Wenn wir uns in unserem Alltag umsehen, finden wir viele Beispiele für nicht harmonische Schwingungen. Sie sind in unserer natürlichen und künstlichen Umgebung präsent und bestimmen viele physikalische Prozesse.Nicht harmonische Schwingung Beispiel in der Physik
Eine Vielzahl physikalischer Systeme führt nicht harmonische Schwingungen aus. Ein häufiges Beispiel für eine nicht harmonische Schwingung sind gedämpfte Schwingungssysteme. In einem mechanischen System, bei dem Reibung eine Rolle spielt, kann die Schwingung gedämpft sein. Ein Beispiel hierfür ist ein schwingendes Pendel in der Luft oder eine schwingende Feder mit angehängtem Gewicht. In beiden Fällen wird die Bewegung durch die Reibung oder den Luftwiderstand allmählich abgebremst. Daher ändert sich die Amplitude stetig, und die Schwingung ist somit als nicht harmonisch zu charakterisieren. Darüber hinaus tritt die nicht harmonische Schwingung in akustischen Phänomenen auf. Das Ausklingen eines Pianos oder das Zupfen einer Gitarrensaite führen zu komplexen Schwingungsmustern, die weit entfernt von einer einfachen harmonischen Schwingung sind.Dabei ist das Ausklingen von Klängen ein klassisches Beispiel für die Dämpfung und die damit verbundene nicht harmonische Schwingung. Der initiale Klang hat eine hohe Amplitude, die dann im Laufe der Zeit aufgrund der Dämpfungseffekte abnimmt.
Anharmonische und nicht periodische Schwingung: Beispiele und Unterschiede
Es ist wichtig zu beachten, dass nicht alle nicht harmonischen Schwingungen gleich sind. Zwei wichtige Unterarten sind die anharmonischen und die nicht periodischen Schwingungen.Eine anharmonische Schwingung tritt auf, wenn die rückstellende Kraft, die den Körper zur Ruhelage zurückführt, nicht proportional zur Auslenkung ist, wie es bei einer harmonischen Schwingung der Fall wäre. Diese Art von Schwingung ist besonders häufig in der Natur zu finden, beispielsweise in molekularen oder atomaren Systemen.
Ein gutes Beispiel hierfür ist die molekulare Schwingung, bei der Atome innerhalb eines Moleküls schwingen. Diese Schwingungen sind in der Regel nicht harmonisch, da die Bindungskraft zwischen den Atomen nicht linear mit der Auslenkung variiert.
Eine nicht periodische Schwingung ist eine Schwingung, die nicht die gleiche Form und Periode aufweist, wenn sie sich wiederholt. Ein solches Schwingungsverhalten ist recht chaotisch und findet sich z.B. bei turbulenten Flüssigkeitsbewegungen oder beim chaotischen Pendeln.
Definition der Anharmonischen Schwingung
Eine anharmonische Schwingungunterscheidet sich von einer harmonischen Schwingung vor allem dadurch, dass die rückstellende Kraft, die den schwingenden Körper zur Ausgangsposition zurückführt, nicht proportional zur Auslenkung ist. Im Gegensatz zur harmonischen Schwingung, bei der die rückstellende Kraft und die Auslenkung ein lineares Verhältnis aufweisen, kann die Kraft bei einer anharmonischen Schwingung stärker oder schwächer als die Auslenkung sein. Dies führt zu einer Variation in der Frequenz der Schwingung.Rückstellende Kraft | Auslenkung | Frequenz |
Proportional zur Auslenkung | Lineares Verhältnis | Stetig |
Nicht proportional zur Auslenkung | Varianz | Variiert |
In der anharmonischen Schwingung ist also die Abweichung von der Harmonizität durch den \(\beta\) Term gegeben, der die Nicht-Linearität zwischen der rückstellenden Kraft und der Auslenkung darstellt.
Ein Beispiel für eine anharmonische Schwingung wäre das Ziehen einer Feder. Wenn die Feder leicht gestreckt wird, verhält sie sich fast wie ein harmonischer Oszillator. Aber wenn sie stark gedehnt wird, dann ist die rückstellende Kraft nicht mehr proportional zur Auslenkung und das System wird anharmonisch
Nicht harmonische Schwingung - Das Wichtigste
- Nicht harmonische Schwingung: Schwingung mit variierender Frequenz oder nicht sinusförmig
- Hauptmerkmale nicht harmonischer Schwingungen: Variable Frequenz, variable Amplitude, keine konstante Periodendauer
- Unterschiede zu harmonischen Schwingungen: Variable Periodendauer und Schwingungsform, Frequenz kann sich ändern
- Kenngrößen zur Unterscheidung: Frequenz, Periodendauer und Schwingungsform bei harmonischen und nicht harmonischen Schwingungen
- Formel für nicht harmonische Schwingung: A(t) = A_0 * e^(-γ * t) * cos(ω * t + φ), Abhängigkeit von Dämpfung und Anfangsbedingungen
- Anwendungsbereiche der Formel: Mechanik, Optik, Elektrotechnik, Akustik
- Beispiele für nicht harmonische Schwingungen: Gedämpfte Schwingungssysteme wie schwingendes Pendel oder Feder mit Gewicht, ausklingende Töne von Musikinstrumenten
- Unterarten nicht harmonischer Schwingungen: Anharmonische Schwingungen und nicht periodische Schwingungen
- Anharmonische Schwingung: Rückstellende Kraft nicht proportional zur Auslenkung, häufig in molekularen oder atomaren Systemen
- Nicht periodische Schwingung: Keine regelmäßige Wiederholung der Schwingungsform und -periode, z.B. bei Erdbeben
Lerne mit 10 Nicht harmonische Schwingung Karteikarten in der kostenlosen StudySmarter App
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Nicht harmonische Schwingung
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr