Die schiefe Ebene ist aber auch ein beliebter Versuch in der Physik. Im Vergleich zum freien Fall kannst du an der schiefen Ebene weitaus präzisere Messungen durchführen.
Wichtige Größen an der schiefen Ebene
Ob du einen Ball einen Hügel herunterrollst oder den Versuch zur schiefen Ebene im Physikunterricht durchführst. Gewisse Grundgrößen werden dir dabei immer begegnen. Fangen wir mit den Kräften an.
Schiefe Ebene – Kräfte
Stell dir vor: Ein Ball rollt einen Hang herunter.
Dabei bemerkst du, dass der Ball beim Rollen beschleunigt wird. Diese Beschleunigung ist aber auch deutlich geringer, als wenn sich der Ball im freien Fall befinden würde. Das heißt, dass die Gewichtskraft , welche den Ball in beiden Fällen beschleunigt, an der schiefen Ebene je nach Winkel nur teilweise zur Beschleunigung beiträgt. Den anderen Teil der Gewichtskraft nennen wir . Das s steht dabei für den senkrechten Winkel zur schiefen Ebene.
Um den Teil der Gewichtskraft, der den Ball beschleunigt, handelt es sich im Folgenden.
Der beschleunigende Anteil der Gewichtskraft heißt Hangabtriebskraft. Bevor wir diese ermitteln, schauen wir uns zunächst die grafische Darstellung der Kräfte an.
Wichtig ist dabei, wie die Kräfte wirken. Die Gewichtskraft wirkt vom Körper senkrecht nach unten zum Erdmittelpunkt. Der senkrechte Anteil wirkt auch senkrecht, aber Vorsicht: senkrecht zur schiefen Ebene. Die Hangabtriebskraft ist der Anteil der Gewichtskraft, welcher parallel zu schiefen Ebene wirkt.
Abbildung 1: Kräfteam Körper an der schiefen Ebene
Verschiebst du diese drei Kräfte ein wenig, bilden diese ein rechtwinkliges Dreieck mit dem rechten Winkel zwischen und . Der Winkel zwischen Hangabtriebs- und Gewichtskraft ist dabei gleich dem Winkel der schiefen Ebene zur Erdoberfläche.
Abbildung 2: Kräfteparallelogramm an der schiefen Ebene
Diese Anordnung der Kräfte wird auch Kräfteparallelogramm genannt. In diesem Fall ist es sogar ein Rechteck. Damit kannst du die Hangabtriebskraft ermitteln.
Schiefe Ebene – Hangabtriebskraft ermitteln
Die Hangabtriebskraft kannst du über grafische Addition (in diesem Falle Subtraktion) der Kraftvektoren und ermitteln. Das würde hier aber den Rahmen sprengen. Außerdem sind die Größen oftmals nicht als Vektoren, sondern als Beträge gegeben. Somit kannst du die Kräfte und Winkel im rechtwinkligen Dreieck berechnen.
Der Einfachheit halber werden ab hier die Vektorpfeile und Betragszeichen weggelassen und wir gehen immer vom Betrag der Kräfte aus, solange das nicht anders erwähnt wird.
Die Hangabtriebskraft kannst du also mithilfe der Gewichtskraft und des Winkels der schiefen Ebene wie folgt definieren:
Befindet sich ein Körper der Masse auf einer schiefen Ebene mit dem Winkel zwischen schiefer Ebene und Erdoberfläche, wirkt die Gewichtskraft des Körpers anteilig auf die Beschleunigung des Körpers. Dieser beschleunigende Anteil wird Hangabtriebskraft genannt.
Die Hangabtriebskraft berechnest du mit folgender Formel:
Die Einheit der Hangabtriebskraft ist das Newton:
Die Hangabtriebskraft ist also die beschleunigende Kraft. Wie groß ist die Beschleunigung?
Die Beschleunigung an der schiefen Ebene
Denke an die Newtonschen Grundgesetze der Mechanik und die folgende Formel zurück:
Also Kraft ist Masse mal Beschleunigung .
Mehr zu den newtonschen Grundgesetzen der Mechanik findest du im dazugehörigen Artikel auf StudySmarter!
An der schiefen Ebene kennst du die beschleunigende Kraft (Hangabtriebskraft) und die Masse des Körpers schon. Die Größen kannst du also in die Formel einsetzen:
Die Masse wird auf beiden Seiten gekürzt:
Wechselst du die Seiten dieser Formel, kannst du die Beschleunigung an der schiefen Ebene wie folgt definieren:
Befindet sich ein Körper auf einer schiefen Ebene und kann sich frei bewegen, so wirkt auf diesen eine Beschleunigung entlang der schiefen Ebene. Diese Beschleunigung berechnest du mithilfe des Ortsfaktors und des Winkels zwischen schiefer Ebene und der Erdoberfläche:
Die Beschleunigung wird mit der dir bekannten Einheit Meter pro Quadratsekunde angegeben:
Jetzt kennst du die Hangabtriebskraft und die durch den Winkel der schiefen Ebene bestimmte Beschleunigung eines Körpers an der schiefen Ebene. Daraus kannst du auch die Bewegung mathematisch schließen.
Schiefe Ebene – Bewegungsgleichung
Denkst du an den Ball zurück, der den Hang herunterrollt, ist die folgende Frage von Relevanz:
Was ist mit der Reibung? Diese wird an der schiefen Ebene meist nicht berücksichtigt. Mit dieser Annahme kannst du die Bewegung eines Körpers an der schiefen Ebene als eine gleichmäßig beschleunigte Bewegung verstehen.
Mehr zur gleichmäßig beschleunigten Bewegung findest du im dazugehörigen StudySmarter Artikel!
Das bedeutet, du kannst die Bewegungsgesetze an der schiefen Ebene mithilfe der Beschleunigung wie folgt definieren:
Das Weg-Zeit-Gesetz an der schiefen Ebene lautet:
Für das Geschwindigkeits-Zeit-Gesetz an der schiefen Ebene nimmst du auch die von der gleichmäßig beschleunigten Bewegung bekannte Formel und setzt die Beschleunigung an der schiefen Ebene ein:
Geschwindigkeits-Zeit-Gesetz an der schiefen Ebene:
Die Größen sind hier die gleichen Größen, die schon beim Weg-Zeit-Gesetz beschrieben sind.
Jetzt kennst du die wichtigsten Größen an der schiefen Ebene. Damit kannst du den Versuch durchführen, die Erdbeschleunigung (Ortsfaktor) im Experiment zu ermitteln!
Versuch: Bestimmen des Ortsfaktors an der schiefen Ebene
Wie im Physikunterricht werden wir hier gemeinsam ein Versuchsprotokoll erstellen. Das Protokoll unterteilen wir in Aufgabenstellung, Aufbau und verwendete Formeln, Durchführung und Messungen, Beobachtung und Auswertung inklusive möglicher Fehlerquellen.
Aufgabenstellung
Bestimme mithilfe einer schiefen Ebene den Ortsfaktor (Erdbeschleunigung) an der Erdoberfläche.
Gehe dabei wie folgt vor: Baue drei verschiedene schiefe Ebenen bekannter Höhe und Länge. Lass eine Murmel die schiefen Ebenen herunterrollen.
Miss dabei mindestens dreimal pro schiefe Ebene, wie lang die Murmel benötigt, bis diese unten ankommt. Bilde für jede schiefe Ebene die Durchschnittszeit. Berechne daraus deinen experimentell bestimmten Wert für den Ortsfaktor (Erdbeschleunigung).
Aufbau und Formeln
Du nimmst den Deckel einer großen Pappverpackung mit einer Länge von und lehnst diesen an verschiedene Gegenstände im Haushalt der Höhen an. Die Pappe ist dabei die schiefe Ebene und bildet mit dem Boden einen Winkel .
Abbildung 3: Versuchsaufbau
Dadurch hast du drei verschiedene Situationen mit schiefen Ebenen, an denen du deinen Versuch durchführen kannst.
Das Ziel des Versuchs ist es, den Ortsfaktor zu bestimmen. Die bekannten Größen sind jeweils die Höhe und die Länge der schiefen Ebene. Aus diesen beiden Werten kannst du den Winkel bestimmen. (Trigonometrie: Am rechtwinkligen Dreieck ist der Sinus eines Winkels gleich Gegenkathete durch Hypotenuse.)
Schau dir zur Berechnung am rechtwinkligen Dreieck die dazugehörigen Artikel an!
Du legst jetzt eine Murmel an das obere Ende der schiefen Ebene (wichtig: nur auflegen, nicht anschieben). Diese lässt du los, woraufhin die Murmel die Ebene herunterrollt. Dabei startest du beim Loslassen eine Stoppuhr. Du misst die Zeit , bis die Murmel am unteren Ende der schiefen Ebene ankommt.
Abbildung 4: Versuchsablauf
Du hast jetzt also , die jeweilige Zeit , und den zurückgelegten Weg der Murmel. Schaust du dir das Weg-Zeit-Gesetz an der schiefen Ebene an, hast du dort also alle Werte außer gegeben bzw. gemessen:
Diese Formel stellst du jetzt auf um:
Hier kannst du nun einsetzen und bekommst:
Jetzt hast du alle Vorbereitungen getroffen und kannst den Versuch nun durchführen.
Durchführung und Messung
Den im vorangegangenen Abschnitt beschriebenen Versuchsablauf kannst du für alle drei Situationen jeweils dreimal durchführen. Trage deine Messwerte dann in eine Tabelle ein. Bestimme dabei auch die durchschnittliche Zeit für jede Situation. (Achtung: s ist hier die Einheit Sekunde, nicht die Strecke s.)
Größe | Situation 1 | Situation 2 | Situation 3 |
erste Messung | 1,00 s | 0,78 s | 0,74 s |
zweite Messung | 0,93 s | 0,82 s | 0,68 s |
dritte Messung | 1,01 s | 0,80 s | 0,71 s |
Durchschnittliche Zeit | | | |
Jetzt nimmst du dir die Formel für , welche du oben hergeleitet hast:
Setzt du nun die Werte für und sowie die durchschnittlichen Messwerte ein, kannst du für die verschiedenen Situationen den Ortsfaktor ermitteln.
Größe | Situation 1 | Situation 2 | Situation 3 |
Zeit | | | |
Ortsfaktor | | | |
Aus diesen drei Ortsfaktoren kannst du jetzt den Durchschnitt bilden und damit erhältst du deinen experimentell bestimmten Wert für die Erdbeschleunigung :
Beim Aufnehmen der Messwerte und Beobachten der Murmel solltest du einige Dinge beachten.
Versuchsbeobachtung
Bei der Durchführung wirst du beobachten, dass die Zeit, die die Murmel benötigt, bis sie unten ankommt, mit der Höhe und somit dem Winkel der schiefen Ebene sinkt. Außerdem kannst du beobachten, dass die jeweiligen Messwerte teilweise deutlich auseinanderliegen. Das Rollen der Murmel ist auch nicht zu 100 % gleichmäßig. Die Murmel springt manchmal eine sehr kleine Strecke, anstatt zu rollen. Das kannst du bei der Auswertung mit einbeziehen.
Versuchsauswertung und Fehlerquellen
Zunächst vergleichst du deinen experimentell bestimmten Wert mit dem reellen Wert des Ortsfaktors .
Dein experimentell bestimmter Wert ist 94% des reellen Wertes. Er ist also um 6% kleiner. Dieser Wert ist, verglichen mit der Qualität des Versuchs, sehr gut.
Mögliche Abweichungen könnten durch ungenaue Messungen entstanden sein. Du hast sehr kurze Zeiten erfasst, wodurch Ungenauigkeiten durch deine Reaktionszeit einen großen Einfluss auf die Messungen haben. Dadurch hast du tendenziell längere Zeiten gemessen.
Hinzu kommt, dass die Murmel durch Reibung und kleine Unebenheiten in der Oberfläche der Pappe gebremst wird. Dadurch ist die gemessene Zeit etwas größer, als wenn perfekte Bedingungen herrschten.
Außerdem sind die Höhen der Gegenstände, an welche du die schiefe Ebene legst, mit hoher Wahrscheinlichkeit nicht exakt die benutzten Höhen.
Da die schiefe Ebene aus Pappe ist, hängt diese vermutlich auch ein wenig durch, wodurch die Beschleunigung der Murmel nicht an allen Stellen gleich ist.
Die schiefe Ebene hat aber nicht nur den Nutzen, die Erdbeschleunigung zu bestimmen.
Schiefe Ebene – Anwendung
Das Beispiel mit der Treppe in der Einleitung ist zwar keine physikalisch exakte schiefe Ebene (Treppenstufen anstatt Ebene), jedoch ist die Wirkungsweise die gleiche. Die zurückgelegte Strecke wird bei gleicher überwundener Höhe erhöht, wodurch der Kraftaufwand geringer wird.
Dieser Zusammenhang von Kraft und Weg ist die goldene Regel der Mechanik und wurde 1594 von Galileo Galilei geprägt:
Was du an Kraft sparst, musst du an Weg zusetzen.
Macht ein Mechanismus Gebrauch von dieser Regel, wird dieser meist Kraftwandler genannt.
Mehr zur goldenen Regel der Mechanik und Kraftwandlern allgemein findest du in den dazugehörigen StudySmarter Artikeln heraus!
Die schiefe Ebene ist also ein Kraftwandler, was bedeutet das?
Die schiefe Ebene als Kraftwandler
Denke an den Transport von Autos.
Wenn ein Auto auf einen Transportwagen geladen wird, kannst du beobachten, dass das Auto dabei über eine Rampe auf den Transporter gezogen wird.
Das ist deutlich kraftsparender, als die Autos mit einem Kran direkt auf den Transporter zu laden. Außerdem werden dadurch teure Materialien, vor allem am Auto, geschont.
Veränderst du den Winkel der schiefen Ebene und möchtest trotzdem auf die gleiche Höhe kommen, veränderst du dadurch die Gesamtstrecke , welche du zurücklegen musst. Ein geringerer Winkel bedeutet, dass du eine geringere Hangabtriebskraft überwinden musst, um auf der Ebene nach oben zu kommen.
Abbildung 4: die schiefe Ebene als Kraftwandler
Welche Auswirkungen das genau hat, kannst du auch berechnen!
Schiefe Ebene berechnen
Wenn du wissen möchtest, wie groß die Änderung der benötigten Kraft durch eine Rampe beim Beladen des Transporters ist, schaue dir die folgende Aufgabe an!
Beim Beladen eines Transporters mit sehr schweren Gegenständen entscheidest du dich, eine Rampe zu verwenden. Dadurch möchtest du erreichen, dass deine benötigte Kraft nur noch ein Viertel so groß ist wie ohne Rampe.
Aufgabe
Berechne den Winkel , in welchem du die Rampe anbringen musst, um die benötigte Kraft um einen Faktor von zu verändern.
Lösung
In der Aufgabe geht es darum, Kräfte zu vergleichen. Also musst du dir zuerst überlegen, welche Kräfte überhaupt eine Rolle spielen.
Hebst du einen Gegenstand, musst du dabei die Gewichtskraft überwinden. An der schiefen Ebene hingegen ist es die Hangabtriebskraft . Die Hangabtriebskraft soll dabei ein Viertel Gewichtskraft sein. Damit kannst du also eine Gleichung aufstellen:
Die Hangabtriebskraft selbst hängt von der Gewichtskraft ab. Die Formel hast du in diesem Artikel schon gelernt:
Die Formel für die Hangabtriebskraft kannst du nun in die Gleichung vom vorherigen Schritt einsetzen:
Diese Formel kannst du jetzt auf den Winkel umstellen ( bzw. ist der Arcussinus, die Umkehrfunktion des Sinus):
Den Winkel der Rampe kannst du nun berechnen:
Mehr zum Sinus und Arcussinus kannst du in den entsprechenden Artikeln auf StudySmarter finden!
Schiefe Ebene – Das Wichtigste
- An der schiefen Ebene wird die Gewichtskraft eines Körpers aufgeteilt.
- Der Kraftanteil, der den nach unten rollenden Körper beschleunigt, wird Hangabtriebskraft genannt. Diese hängt von der Gewichtskraft des Körpers der Masse und dem Winkel der schiefen Ebene ab.
- Die Beschleunigung eines Körpers ist bei perfekten Bedingungen ausschließlich vom Winkel der schiefen Ebene abhängig.
- An der schiefen Ebene gelten die Bewegungsgleichungen der gleichmäßig beschleunigten Bewegung.
- Weg-Zeit-Gesetz:
- Geschwindigkeit-Zeit-Gesetz:
- An der schiefen Ebene läuft grundsätzlich die gleiche Bewegung ab wie im freien Fall. Die schiefe Ebene sorgt aber dafür, dass die Vorgänge langsamer ablaufen.
- Die schiefe Ebene wird im Alltag als Kraftwandler benutzt, um auf Kosten der zurückgelegten Strecke bei geringerem Kraftaufwand Lasten zu heben, zum Beispiel eine Rampe beim Beladen eines Transporters.