Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Schwebung Lehrer

  • 12 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 17.02.2023
  • 12 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 17.02.2023
  • 12 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Die Interferenz von Wellen erklärt einige interessante Welleneigenschaften – unter anderem die Schwebung. Diese findet etwa beim Stimmen von Instrumenten oder beim Entziffern von Morsenachrichten mit dem Schwebungssummer Anwendung.

In dieser Erklärung erfährst Du, wie die Schwebung in der Physik definiert wird und wie Du sie als Schwingung und Welle erklären kannst, so wie die Formel der Schwebungsfrequenz.

Interferenz

Wenn zwei Wellen aufeinandertreffen, können sie sich nach dem Superpositionsprinzip zu einer Gesamtwelle überlagern. Dabei addieren sich ihre Amplituden und je nach Lage zueinander kann es zur konstruktiven oder destruktiven Interferenz kommen.

Wenn sich die beiden Wellen verstärken und die resultierende Amplitude größer ist, als die Amplituden der Teilwellen, so sprichst Du von konstruktiver Interferenz. Destruktive Interferenz besteht wiederum, wenn sich die beiden Wellen auslöschen.

Du möchtest mehr zu Interferenz lesen? Dann schau gern in die entsprechende Erklärung.

Konstruktive Interferenz tritt dabei auf, wenn Wellenberg (bzw. Wellental) der ersten Welle auf Wellenberg (bzw. Wellental) der zweiten Welle treffen. Dies geschieht immer dann, wenn die Wellen um ein ganzzahliges Vielfaches der Wellenlänge zueinander verschoben sind. In diesem Fall ist die Amplitude der Gesamtwelle maximal:

Schwebung konstruktive destruktive InterferenzAbb. 1 - Konstruktive und destruktive Interferenz

Destruktive Interferenz tritt wiederum auf, wenn Wellenberg auf Wellental trifft. Dies ist der Fall, wenn die beiden Wellen um die halbe Wellenlänge zueinander verschoben sind. Bei gleich großen Amplituden der Teilwellen löschen sich diese vollständig aus.

Sind die Amplituden unterschiedlich groß, so kommt es ebenfalls zu destruktiver oder konstruktiver Interferenz. Allerdings löschen sie sich im Fall der destruktiven Interferenz dann nicht vollständig aus, die Amplitude der Gesamtwelle wird lediglich kleiner.

Überlagerst Du wiederum Wellen unterschiedlicher Wellenlänge (bzw. Frequenz), so kann es zur Schwebung kommen.

Schwebung Physik

Schau Dir die Überlagerung zweier Wellen an, deren Amplituden gleich sind, die Wellenlängen sich jedoch geringfügig voneinander unterscheiden:

Schwebung Interferenz zweier Wellen unterschiedlicher Wellenlängen StudySmarterAbb. 2 - Interferenz zweier Wellen unterschiedlicher Wellenlängen

Dabei ist die Wellenlänge der ersten Welle etwas kürzer als die der zweiten Welle. Wenn diese Wellen miteinander interferieren, so kommt es abwechselnd zur konstruktiven und destruktiven Interferenz:

  1. Wellenberg trifft auf Wellenberg: Es kommt zur konstruktiven Interferenz, wobei sich die Amplituden der Teilwellen zur maximalen Amplitude der Gesamtwelle addieren.

  2. Wellental trifft auf Wellenberg: Es kommt zur destruktiven Interferenz und die Teilwellen löschen sich an dieser Stelle aus. Die Amplitude der Gesamtwelle ist somit Null.

  3. Wellenberg trifft erneut auf Wellenberg und es kommt wieder zur konstruktiven Interferenz. Die Amplitude der Gesamtwelle erreicht dabei ihr Maximum.

Zwischen dem 1. und dem 2. Punkt nimmt die Amplitude der Gesamtwelle stetig ab. Bevor es allerdings erneut zum Maximum bei Punkt 3 kommt, nimmt die Amplitude wieder zu. Das Zu- und Abnehmen der Amplitude erfolgt dabei periodisch.

Schwebung Definition

Durch Interferenz zweier Wellen mit unterschiedlichen Wellenlängen, die allerdings nahe beieinander liegen, kommt es abwechselnd zur konstruktiven und destruktiven Interferenz. Dadurch ändert sich die Amplitude der resultierenden Welle periodisch. Dies bezeichnest Du als Schwebung.

Schwebung ist die periodische Änderung der Amplitude einer Welle.

Bei der Schwebung ändert sich die Amplitude der Welle mit der Zeit – sie schwingt also.

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Schwebung

Schwebung Schwingung

Die Schwingung der Amplitude kannst Du Dir am besten im Vergleich mit einer Welle vorstellen, deren Amplitude konstant ist:

Schwebung Welle konstanter Amplitude und schwingender Amplitude Vergleich StudySmarterAbb. 3 - Vergleich zwischen Welle konstanter Amplitude und schwingender Amplitude

Im Gegensatz zur Welle mit einer konstanten Amplitude wird die Amplitude der Welle bei einer Schwebung mit der Zeit immer kleiner und dann größer.

Schwebung Welle

Die Schwingung der Amplituden breitet sich im Raum als Welle aus:

Schwebung Welle Schwingung StudySmarterAbb. 4 - Schwebung

Die Frequenz f, mit der die Amplitude schwingt, ist über die Geschwindigkeit v der Welle mit ihrer Wellenlänge λ verbunden:

λ=vf

Daraus berechnest Du die Frequenz der Schwebung. Sowohl diese als auch die Schwebung selbst kannst Du durch Formeln ausdrücken.

Schließe dich mit deinen Freunden zusammen, und habt Spaß beim Lernen

Kostenlos registrieren
Schwebung

Schwebung – mathematische Beschreibung

Die Schwebung entsteht als Überlagerung zweier Wellen. Da diese periodisch sind, kannst Du sie durch eine Sinus- oder Cosinusfunktion beschreiben. Mit der jeweiligen Frequenz f1 bzw. f2 lässt sich der zeitliche Verlauf der ersten oder der zweiten Welle durch x1(t) bzw. x2(t) beschreiben. Dabei gehst Du davon aus, dass beide Wellen dieselbe Amplitude x0 haben:

x1(t)=x0cos(2πf1t)x2(t)=x0cos(2πf2t)

In diesem Fall wird der Cosinus verwendet. Genauso gut könntest Du die Formeln aber auch mit dem Sinus aufstellen.

Mithilfe dieser Gleichungen kannst Du nun auch Schwebung beschreiben.

Schwebung Formel

Da die beiden Wellen sich nach dem Superpositionsprinzip addieren, kannst Du die Formel der Schwebung x(t) durch Addition von x1 und x2 aufstellen:

x(t)=x1(t)+x2(t)=x0cos(2πf1t)+x0cos(2πf2t)=x0(cos(2πf1t)+cos(2πf2t))

An dieser Stelle kannst Du die Formel durch folgende Umformung vom Cosinus weiter umformen:

cos(a)+cos(b)=2cos(ab2)cos(a+b2)

Mit a=2πf1t und b=2πf2t erhältst Du daraus die Formel für die Schwebung:

x(t)=2x0cos(2πf1t2πf2t2)cos(2πf1t+2πf2t2)=2x0cos(2πf1f22t)Schwebung (Einhüllende)cos(2πf1+f22t)Welle

Dabei beschreibt der erste Cosinus-Term die Schwebung und der zweite Term beschreibt die resultierende Welle an sich. Vergleichst Du diese Terme mit den Formeln für x1(t) bzw. x2(t), so kannst Du die Ausdrücke

f1f22undf1+f22

mit den jeweiligen Frequenzen assoziieren.

Finde relevante Lernmaterialien und bereite dich auf den Prüfungstag vor

Kostenlos registrieren
Schwebung

Schwebung Frequenz

Hier unterscheidest Du zwischen der Frequenz, mit der die – aus der Überlagerung resultierende Welle schwingt und der Schwebungsfrequenz, die sich aus der einhüllenden Welle ergibt.

Schwebung Bestimmung der Schwebungsfrequenz StudySmarterAbb. 5 - Bestimmung der Schwebungsfrequenz

Dabei kannst Du die Schwingungsfrequenz der Welle f als Mittelwert der beiden Teilfrequenzen f1 und f2 an der Formel für die Schwebung ablesen:

f=f1+f22

Die Schwebungsfrequenz fS folgt wiederum aus der Frequenz f der einhüllenden Welle, die Du an der Formel der Schwebung als

f=f1f22

ablesen kannst. Die Schwebung an sich hat die doppelte Frequenz, da sie bei halber Frequenz bereits zwei Maxima durchläuft. Deswegen entspricht die Schwebungsfrequenz fS der doppelten Frequenz f, sodass der Faktor 12 aus der Formel entfällt. Da es nicht wichtig ist, ob die erste oder die zweite Welle eine höhere Frequenz hat, wird dabei stets der Betrag ihrer Differenz genommen.

Die Schwebungsfrequenz fS entspricht der Schwingungsfrequenz der Amplitude. Du kannst sie berechnen mit:

fS=|f1f2|

Dabei sind f1 und f2 die Frequenzen der beiden Teilwellen, die sich zur Schwebung überlagern.

Der Betrag wird durch die Betragsstriche |...| symbolisiert und bedeutet, dass der darin stehende Wert immer ein positives Vorzeichen bekommt. Der Betrag von 1, also |1|, ergibt genau 1.

Je kleiner die Differenz der beiden Teilfrequenzen ist, desto kleiner ist auch die Schwebungsfrequenz.

Nach so viel Theorie bleibt nur noch eine Sache zu klären: Wie wird die Schwebung erzeugt und wo kannst Du ihr im Alltag begegnen?

Schwebung Anwendung

Schwebung kann bei jeder Art von Wellen auftreten. Allerdings findet sie bei Schallwellen in der Akustik die häufigste Anwendung. Dort werden etwa Instrumente mit ihrer Hilfe gestimmt.

Schwebung in der Akustik

Töne, Klänge und Geräusche werden durch Schallwellen verursacht. Schall im Frequenzbereich zwischen 20Hz und 20000Hz kannst Du dabei hören. Die genaue Frequenz einer Schallwelle gibt sogar die Tonhöhe an: Hohe Frequenzen ergeben einen hohen Ton. Niedrige Frequenzen führen wiederum zu einem tiefen Ton.

Mehr dazu kannst Du bei „Töne“ oder der allgemeinen Erklärung zum Schall nachlesen.

Aus der Amplitude der Schallwelle kannst Du wiederum auf die Lautstärke schließen. Hat die Schallwelle etwa eine konstante Amplitude, so hört sie sich zu jedem Zeitpunkt gleich laut an. Die Schwebung hingegen macht sich als ein Ton bemerkbar, dessen Lautstärke periodisch lauter und leiser wird.

Je kleiner nun die Schwebungsfrequenz ist, desto schneller schwingt die Lautstärke der Schwebung. Unterhalb der Hörgrenze bei fS=20Hz kannst Du gar nicht mehr hören, dass die Lautstärke periodisch zwischen laut und leise schwingt. In diesem Fall hört sich der Ton an, als hätte er eine konstante Lautstärke. Dies wird etwa beim Stimmen von Instrumenten ausgenutzt.

Wenn Du Dein Instrument stimmen möchtest, so verwendest Du für jeden Ton einen Stimmton als Referenz. Spielst Du diesen gleichzeitig mit dem Ton Deines Instruments ab, so kommt es zur Schwebung, sofern sich die Frequenzen des Referenztons und Deines gespielten Tons unterscheiden. Dies äußert sich darin, dass die Lautstärke vom resultierenden Ton periodisch schwingt.

Jetzt stimmst Du Dein Instrument so lange, bis die Lautstärke konstant bleibt. In diesem Fall verschwindet die Schwebung, da die Frequenzen des Referenztons und des von Dir gespielten Tons entweder übereinstimmen oder so nahe beieinander liegen, dass Du sie nicht mehr auseinanderhalten kannst.

Außerhalb der Akustik kann sich Schwebung auch in der Kommunikationstechnik als äußerst nützlich erweisen.

Lerne mit Millionen geteilten Karteikarten

Kostenlos registrieren
Schwebung

Schwebungssummer

Hast Du schon mal etwas vom Morsen gehört?

Bevor es das Internet oder gar das Telefon gab, wurde Morsen als ein wichtiges Mittel zur Kommunikation verwendet. Dabei wurde die Nachricht im Morsecode – einer Abfolge von Strichen, Punkten und Pausen – als kurzwelliger Schall an einen Empfänger übertragen und von diesem ausgelesen. Mit modernen Kommunikationsmethoden rückte das Morsen immer weiter in den Hintergrund und wird heutzutage nur noch von Enthusiasten betrieben.

Allerdings liegen Morse-Signale nicht im hörbaren Frequenzbereich. Um sie dennoch hörbar zu machen, benötigst Du einen sogenannten Schwebungssummer. Am Schwebungssummer kannst Du nämlich eine Schallwelle erzeugen, die sich mit dem Morse-Signal überlagert. Dabei wählst Du die Frequenz möglichst so, dass sie nahe der Frequenz des Morse-Signals liegt.

Dabei kommt es zwar zwangsläufig zur Schwebung, doch das ist nur ein Nebeneffekt. Die praktischere Konsequenz ist nämlich die Frequenzverschiebung.

Stell Dir vor, Du erhältst eine Nachricht im Morsecode bei einer Frequenz fEmpfang=40000Hz. Leider kannst Du in diesem Frequenzbereich nicht mehr hören und deswegen benutzt Du einen Schwebungssummer.

Am Schwebungssummer stellst Du eine Frequenz von fSchwebungssummer=35000Hz ein. Die dabei erzeugte Schallwelle überlagert sich mit dem eintreffenden Signal und es kommt zur Schwebung. Die entsprechende Schwebungsfrequenz fS beträgt:

fS=|fEmpfangfSchwebungssummer|=|40000Hz35000Hz|=5000Hz

Diese Frequenz kannst Du nun problemlos durch das Gehör wahrnehmen.

Der Schwebungssummer hilft Dir also, nicht hörbare Frequenzen in den hörbaren Bereich zu verschieben. In modernen Geräten wird das modulierte Signal anschließend gefiltert und verstärkt, bevor Du die Nachricht entziffern kannst!

Schwebung – Das Wichtigste

  • Durch Interferenz können sich Wellen verstärken (konstruktive Interferenz) oder auslöschen (destruktive Interferenz).

  • Haben die interferierenden Wellen eine unterschiedliche Frequenz, so kommt es zur Schwebung.

    • Schwebung entsteht durch abwechselnde konstruktive und destruktive Interferenz.
    • Bei Schwebung ändert sich die Amplitude der resultierenden Welle periodisch.
    • Die Schwingung der Amplitude breitet sich als Welle im Raum aus.
  • Die Schwebungsfrequenz fS gibt die Frequenz an, mit der die Amplitude schwingt. Sie kann als Differenz der Frequenzen der beiden Teilwellen f1 und f2 berechnet werden: fS=|f1f2| Da dabei egal ist, welche Welle höhere Frequenz hat, wird der Betrag genommen.
  • Bei Schallwellen gibt die Frequenz der resultierenden Welle die Tonhöhe an. Die Schwebungsfrequenz bestimmt, mit welcher Frequenz sich die Lautstärke (Amplitude) ändert. Dies wird zum Stimmen von Instrumenten verwendet.

  • Mit einem Schwebungssummer kannst Du nicht hörbare Schallwellen in den hörbaren Bereich „verschieben“.

Nachweise

  1. physikbuch.schule: 8.7 Einfache Überlagerung von Schwingungen. (04.11.2022)
  2. ulfkonrad.de: Überlagerung von Schwingungen - Schwebung. (04.11.2022)
  3. mint-digital.de: Musikinstrumente stimmen: Schwebung sichtbar machen. (04.11.2022)
  4. qsl.net: Morsetelegrafieseite DK5KE. (04.11.2022)
  5. industrial-electronics.com: Radio & Electronic Projects: A beat-frequency oscillator. (04.11.2022)
Häufig gestellte Fragen zum Thema Schwebung

Wie entsteht eine Schwebung?

Eine Schwebung entsteht, wenn zwei Wellen unterschiedlicher, aber sehr ähnlicher Frequenz interferieren. Auf diese Weise kommt es periodisch zur konstruktiver und destruktiver Interferenz, wodurch auch die Amplitude der resultierenden Welle schwingt.

Was ist eine Schwebung in der Physik?

Wenn sich die Amplitude einer Welle periodisch ändert, dann bezeichnest Du dies als Schwebung.

Was ist eine Schwebungsfrequenz?

Die Schwebungsfrequenz entspricht der Schwingungsfrequenz der Amplitude.

Was versteht man unter Eigenfrequenz?

Wird ein schwingfähiges System einmalig zur Schwingung angeregt und in Ruhe gelassen, dann schwingt es in seiner Eigenfrequenz

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen

Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

Kostenlos anmelden
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Physik Lehrer

  • 12 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren