Totalreflexion

Hast Du schon einmal eine Lichtleiterlampe gesehen? Vielleicht hast oder hattest Du so eine ja selbst mal im Zimmer stehen?

Los geht’s

Brauchst du Hilfe?
Lerne unseren AI-Assistenten kennen!

Upload Icon

Erstelle automatisch Karteikarten aus deinen Dokumenten.

   Dokument hochladen
Upload Dots

FC Phone Screen

Brauchst du Hilfe mit
Totalreflexion?
Frage unseren AI-Assistenten

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Totalreflexion Lichtleiterlampe Beispiel StudySmarterAbb. 1 - Lichtleiterlampe

    Kannst Du Dir vorstellen, dass diese Lichtleiterlampe auf demselben physikalischen Prinzip beruht, wie unsere moderne Kommunikation? Dieses Prinzip heißt Totalreflexion. Doch unter welchen Bedingungen tritt die Totalreflexion auf, und welche Anwendung findet sie im Alltag? Hier findest Du alles zur Physik der Totalreflexion, ihre Definition, einige Beispiele (etwa die Totalreflexion am Prisma) sowie die Formel für den Grenzwinkel!

    Brechung und Reflexion

    Totalreflexion kann durch Wechselwirkungen von Licht mit Materie auftreten. Allerdings ist es nicht die einzige mögliche Wechselwirkung: Betrachtest Du Licht nämlich als einen Strahl, der sich geradlinig durch ein Medium ausbreiten kann, so sind auch noch Brechung und die „normale“ Reflexion möglich.

    Solange sich Licht in einem Medium – etwa Luft – bewegt und weder auf ein Hindernis, noch auf eine Grenzfläche zu einem anderen Medium trifft, bleibt seine Geschwindigkeit und die Ausbreitungsrichtung konstant.

    „Medium“ bedeutet in der Fachsprache „Stoff“ oder „Material“. Damit kann z.B. Luft, Wasser oder Glas gemeint sein.

    Totalreflexion Beispiel Verhalten vom Licht an der Wasseroberfläche StudySmarterAbb. 2 - Verhalten vom Licht an der Wasseroberfläche

    Trifft der Lichtstrahl wiederum auf ein anderes Medium – zum Beispiel auf eine Wasseroberfläche – so dringt ein Teil des Lichts in dieses Medium ein. Allerdings ändert sich dabei sowohl seine Geschwindigkeit als auch seine Ausbreitungsrichtung. Dies bezeichnest Du als Brechung. Brechung wird durch das Snelliussche Brechungsgesetz beschrieben.

    Ein Lichtstrahl ändert beim Übergang aus einem Medium mit dem Brechungsindex \(n_1\) in ein Medium mit dem Brechungsindex \(n_2\) seine Ausbreitungsrichtung gemäß dem Snelliusschen Brechungsgesetz:

    $$n_1\cdot \sin(\alpha)=n_2\cdot \sin(\beta)$$

    Dabei ist \(\alpha\) der Einfallswinkel und \(\beta\) der Brechungswinkel.

    Eine ausführliche Erklärung zum Brechungsgesetz und Brechungsindex gibt es unter „Brechung“ und „Brechungsgesetz“!

    Der Brechungsindex bestimmt dabei, wie „optisch dicht“ das entsprechende Medium ist. Je höher dieser Wert ist, desto „dichter“ ist das Medium und desto weniger Licht lässt es durch. Vakuum hat etwa einen Brechungsindex von genau 1 – und damit ist es das optisch dünnste Medium. Die Brechungsindizes anderer, wichtiger Materialien sind im Folgenden dargestellt:

    MediumBrechungsindex
    Luft1,0003
    Wasser1,333
    Fensterglas1,52
    Quarzglas1,459

    Der andere, nicht gebrochene Teil des einfallenden Lichts, wird wiederum von der Oberfläche reflektiert. Dabei gilt das Reflexionsgesetz.

    Der Einfallswinkel \(\alpha\) und der Reflexionswinkel \(\alpha '\) sind nach dem Reflexionsgesetz gleich groß:

    $$\alpha=\alpha '$$

    Wenn Du Dich näher für Reflexion interessierst, dann schau doch im Reflexionsgesetz vorbei! Außerdem findest Du unter „Reflexion am ebenen Spiegel“, „Reflexion am Parabolspiegel“ und „Reflexion am sphärischen Spiegel“ weitere interessante Beispiele für Reflexion.

    Beim Übergang vom optisch dichteren in ein optisch dünneres Medium, wie von Wasser in Luft, kann wiederum auch Totalreflexion auftreten.

    Totalreflexion Physik

    Tritt der Lichtstrahl aus einem optisch dichteren Medium in ein optisch dünneres Medium ein, dann wird der Strahl vom Lot weg gebrochen. Das bedeutet, dass der Brechungswinkel \(\beta\) größer ist, als der Einfallswinkel \(\alpha\).

    Grenzwinkel der Totalreflexion Formel

    Mit zunehmendem Einfallswinkel \(\alpha\) nimmt dabei auch der Brechungswinkel \(\beta\) zu:

    Totalreflexion Grenzwinkel Formel Übergang in ein optisch dünneres Medium StudySmarterAbb. 3 - Reflexion beim Übergang in ein optisch dünneres Medium

    Bei einem bestimmten Einfallswinkel ist ein Brechungswinkel von \(\beta=90^\circ\) erreicht. Dieser Einfallswinkel heißt Grenzwinkel.

    Wenn der Strahl beim Übergang von einem optisch dichteren auf ein optisch dünneres Medium (\(n_1 > n_2\)) im Grenzwinkel \(\alpha_G\) trifft, so verläuft der gebrochene Strahl parallel zur Grenzfläche (\(\beta=90^\circ\)).

    Der Grenzwinkel \(\alpha_G\) wird durch die Brechungsindizes \(n_1\) und \(n_2\) bestimmt:

    $$\sin(\alpha_G)=\frac{n_2}{n_1}$$

    Diese Formel erhältst Du aus dem Sneliusschen Brechungsgesetz.

    Beim Grenzwinkel \(\alpha_G\) ist der Brechungswinkel \(\beta=90^\circ\). Das setzt Du in das Sneliussche Brechungsgesetz ein. Anschließend formst Du die Formel nach \(\alpha_G\) um:

    \begin{align}n_1\cdot\sin(\alpha)&=n_2\cdot\sin(\beta)&&\quad |\beta=90^\circ\;\mathrm{(Totalreflexion)}\\ \\ n_1\cdot\sin(\alpha_G)&=n_2\cdot\sin(90^\circ)&&\quad |\sin(90^\circ)=1\\ \\ n_1\cdot\sin(\alpha_G)&=n_2&&\quad |:n_1\\ \\ \sin(\alpha_G)&=\frac{n_2}{n_1}\end{align}

    Bei größeren Einfallswinkeln findet keine Brechung mehr statt – das gesamte einfallende Licht wird reflektiert.

    Totalreflexion Bedingungen

    Die eine Voraussetzung für Totalreflexion ist also, dass der Einfallswinkel größer sein soll, als der Grenzwinkel. Dass Totalreflexion außerdem nur dann auftreten kann, wenn Licht in ein optisch dünneres Medium übergeht, liegt daran, dass nur in diesem Fall das Licht vom Lot weg gebrochen wird.

    Im umgekehrten Fall – beim Übergang aus optisch dünnerem in ein optisch dichtes Medium – wird der Strahl zum Lot hin gebrochen. In diesem Fall gibt es keine Möglichkeit, dass das Licht parallel zur Grenzfläche gebrochen wird.

    Diese Erkenntnisse kannst Du auch in eine Definition fassen.

    Totalreflexion Definition

    Totalreflexion beschreibt also – wie der Name bereits vermuten lässt – dass das Licht vollständig an der Grenzfläche reflektiert wird.

    Bei Einfallswinkeln, die den Grenzwinkel \(\alpha_G\) überschreiten, kommt es beim Übergang aus einem optisch dichteren in ein optisch dünneres Medium zu einem Brechungswinkel von mehr als \(\beta=90^\circ\). In diesem Fall kann der gebrochene Strahl nicht mehr aus dem optisch dichteren Medium austreten.

    Dies bezeichnest Du als Totalreflexion.

    Damit kannst Du nun berechnen, unter welchem Grenzwinkel es beim Übergang aus dem Wasser in die Luft zur Totalreflexion kommt!

    Totalreflexion Grenzwinkel berechnen

    Der Grenzwinkel \(\alpha_G\) ist durch die Formel

    $$\sin(\alpha_G)=\frac{n_2}{n_1}$$

    definiert. Um ihn daraus zu berechnen, bildest Du den Arcussinus des Bruchs. Wenn Du mit dem Taschenrechner rechnest, so entspricht es dem Knopf, der mit \(\sin^{-1}\) markiert ist.

    Aufgabe

    Wasser hat einen Brechungsindex von \(n_{\text{Wasser}}=1,333\). Luft hat einen Brechungswinkel von \(n_{\text{Luft}}=1,0003\). Berechne den Grenzwinkel der Totalreflexion beim Übergang aus dem Wasser in die Luft.

    Lösung

    Benutze den Taschenrechner, um den Grenzwinkel zu berechnen. Mit \(n_2=n_{\text{Luft}}=1,0003\) und \(n_1=n_{\text{Wasser}}=1,333\) berechnest Du dabei zunächst das Verhältnis

    $$\frac{n_2}{n_1}=\frac{1,0003}{1,333}=0,75$$

    Dann rechnest Du davon den Arcussinus aus, indem Du mit dem Taschenrechner \(\sin^{-1}(0.75)\)

    rechnest. Vergiss dabei nicht, Deinen Taschenrechner auf Grad umzustellen. Als Ergebnis für den Grenzwinkel der Totalreflexion beim Übergang von Wasser zu Luft erhältst Du:

    $$\alpha_G=48,59^\circ$$

    Aber wozu benötigen wir das eigentlich und wie wird Totalreflexion im Alltag genutzt?

    Totalreflexion Beispiel

    Da Totalreflexion immer beim Übergang aus einem optisch dichterem Material in ein optisch dünneres Material auftreten kann, begegnet sie Dir auch beim Übergang aus Glas in Luft. Dies wird unter anderem in der Kommunikationstechnik oder in optischen Geräten, wie der Spiegelreflexkamera, dem Spektrometer und in Fernrohren ausgenutzt. Bei den letzteren Fällen werden Prismen eingesetzt.

    Totalreflexion Prisma

    Fernrohre erzeugen ein auf dem Kopf stehendes Bild, das mit einem Umkehrprisma aufgerichtet wird. Soll Strahlung hingegen in eine andere Richtung gelenkt werden, etwa in einem Spektrometer, so werden Umlenkprismen verwendet.

    Mit einem Umlenkprisma kann die einfallende Strahlung durch Totalreflexion in eine andere Richtung gelenkt werden. Ein Umkehrprisma wird hingegen dazu verwendet, um den Strahl komplett umzukehren.

    In Umlenkprismen findet an der langen Seite Totalreflexion statt: Die Strahlen treten an dieser Stelle nicht aus dem Prisma aus, sondern werden in eine andere Richtung gelenkt – sie verlassen das Prisma in einem rechten Winkel zur Einfallsrichtung.

    Totalreflexion im Prisma Umkehrprisma Umlenkprisma StudySmarterAbb. 4 - Totalreflexion im Prisma

    In Umkehrprismen wird die Richtung des einfallenden Lichts wiederum komplett umgekehrt. Dies passiert unter anderem bei zweifacher Totalreflexion im Prisma.

    Dasselbe Prinzip wird in der Kommunikationstechnik verwendet. Allerdings werden dabei keine Prismen, sondern Lichtleiter genutzt.

    Anwendung Totalreflexion im Alltag

    Eine Glasfaser – oder einen Lichtleiter – kannst Du Dir genau wie die Fasern der Lichtleiterlampe vorstellen: Strahlst Du Licht in das eine Ende hinein, so kommt es an den Wänden zur Totalreflexion und der Strahl tritt somit nicht an der Seite, sondern erst aus dem anderen Ende aus.

    Im Grunde genommen ist beides auch dasselbe – mit dem Unterschied, dass die Fasern einer Lichtleiterlampe aus Kunststoff bestehen und nicht aus Glas.

    Dies wird in der Telekommunikation ausgenutzt, um auf schnellstem Weg Signale und Nachrichten zu übertragen. Dabei werden mehrere Glasfasern zu einem Glasfaserkabel verbunden, durch die Lichtsignale gesendet werden:

    Totalreflexion im Glasfaserkabel Beispiel StudySmarterAbb. 5 - Totalreflexion im Glasfaserkabel

    Das Glasfaserkabel besteht aus einem Glasfaserkern im Inneren, der von einem Glasfasermantel umhüllt ist. Während der Glasfaserkern eine hohe optische Dichte hat, ist der Glasfasermantel optisch dünner. Wird nun ein Lichtsignal durch das Glasfaserkabel gesendet, so müsste es aus einem optisch dichteren in ein optisch dünneres Medium übergehen, wenn es das Glasfaserkabel durch den Mantel verlassen würde.

    Trifft das Lichtsignal in einem größeren Einfallswinkel (zum Einfallslot), als der Grenzwinkel, so kommt es zur Totalreflexion im Inneren des Glasfaserkabels. Das Signal tritt dann nicht durch den Mantel aus und breitet sich durch ständige Totalreflexion an den Wänden aus. Genau wie bei Deiner Lichtleiterlampe tritt das Signal dann am anderen Ende – beim Empfänger – aus dem Lichtleiter aus.

    Lichtleiter finden noch in vielen weiteren Bereichen des alltäglichen Lebens Verwendung. Wenn Du da also mehr zu erfahren möchtest, dann schau doch bei „Lichtleiter Physik“ vorbei!

    Totalreflexion – Das Wichtigste

    • Trifft ein Lichtstrahl auf eine Grenzfläche zwischen zwei Stoffen, so wird ein Teil gebrochen und der andere Teil reflektiert.
      • Die Reflexion erfolgt dabei nach dem Reflexionsgesetz. Demnach ist der Einfallswinkel gleich dem Reflexionswinkel.
      • Die Brechung folgt dem Snelliusschen Brechungsgesetz. Beim Übergang aus einem Medium mit dem Brechungsindex \(n_1\) in ein Medium mit dem Brechungsindex \(n_2\) gilt für den Einfallswinkel \(\alpha\) und Brechungswinkel \(\beta\) folgender Zusammenhang:

        $$n_1\cdot \sin(\alpha)=n_2\cdot \sin(\beta)$$

    • Beim Übergang aus einem optisch dichteren Medium (höherer Brechungsindex) in ein optisch dünneres Medium (niedriger Brechungsindex) kann außerdem Totalreflexion auftreten.

      • Dabei kann das Licht das optisch dichtere Medium nicht mehr verlassen.

      • Dazu muss der Einfallswinkel den Grenzwinkel überschreiten. Der Sinus des Grenzwinkels \(\alpha_G\) wird durch die Brechungsindizes \(n_1\) und \(n_2\) bestimmt (mit \(n_1 > n_2\)):$$\sin(\alpha_G)=\frac{n_2}{n_1}$$

    • Totalreflexion kann in Prismen dazu ausgenutzt werden, um Strahlung in eine andere Richtung zu lenken (Umlenkprismen) oder ganz umzukehren (Umkehrprismen). In der Kommunikationstechnik wird sie zudem für Signalübertragung durch Glasfasern eingesetzt.

    Nachweise

    1. physikbuch.schule: Totalreflexion und Grenzwinkel. (03.10.2022)
    Häufig gestellte Fragen zum Thema Totalreflexion

    Bei welchem Winkel tritt Totalreflexion auf?


    Totalreflexion tritt auf, wenn der Einfallswinkel den Grenzwinkel αG überschreitet. Dieser wird durch die Brechungsindices n1 und n2 der beiden am Übergang beteiligten Stoffe bestimmt:

    αG=sin-1(n2/n1

    Wie groß ist der kritische Winkel für die Totalreflexion an einer Grenzschicht Wasser zu Luft?

    Der Grenzwinkel für die Totalreflexion beim Übergang von Wasser zu Luft beträgt αG=48,6°.

    Warum gibt es den Grenzwinkel?

    Beim Übergang vom optisch dichteren in ein optisch dünneres Medium wird das Licht vom Lot weg gebrochen. Dabei steigt der Brechungswinkel mit zunehmendem Einfallswinkel. Bei einem bestimmten Einfallswinkel erreicht der Brechungswinkel 90°, somit tritt der Strahl nicht mehr in das dünnere Medium ein. Der entsprechende Einfallswinkel ist der Grenzwinkel. Bei größeren Winkeln findet Totalreflexion statt.

    Wo tritt Totalreflexion in der Natur auf?

    Totalreflexion kann immer dann auftreten, wenn der Übergang von einem optisch dichten Medium in ein optisch dünneres Medium stattfindet. Beispielsweise beim Übergang von Wasser oder Glas zu Luft.

    Erklärung speichern

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Physik Lehrer

    • 10 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren