Du schließt also die Augen, beginnst zu rennen und durchquerst die solide aussehende Wand. Kurz darauf befindest du dich auf Plattform 9 3/4 und damit schon auf halbem Weg nach Hogwarts.
Leider funktioniert das Durchqueren solider Wände für uns nur in Büchern oder in unserer Vorstellung. Doch in der Welt der Quantenphysik ist so einiges möglich, das auf den ersten Blick wie Zauberei klingt. In diesem Artikel erfährst du alles über den Tunneleffekt oder warum Quanten durch Wände gehen können.
Tunneleffekt - Erklärung
Wenn du eine Barriere überwinden möchtest, musst du dafür nach der klassischen Mechanik zunächst Energie aufwenden. Möchtest du zum Beispiel auf die andere Seite eines Bergs kommen, musst du zuerst den Berg erklimmen und dann auf der anderen Seite wieder herunterklettern. Quanten haben es leichter, sie können einfach eine Abkürzung durch den Berg nehmen. Selbst wenn sie eigentlich nicht genügend Energie hätten, um den Berg auf klassischem Weg zu überqueren.
Abb. 1 - Tunneleffekt
Als Tunneleffekt bezeichnest du das quantenmechanische Phänomen, bei dem ein Quant eine Barriere einfach durchqueren kann. Auch wenn ihm eigentlich die Energie fehlen würde, um die Barriere auf konventionellem Weg zu überqueren.
Der Tunneleffekt spielt eine wichtige Rolle beim Alphazerfall oder bei der Kernfusion in Sternen. Dadurch wird das Leben auf der Erde erst möglich. Doch wie können Quanten Barrieren einfach "durchtunneln"? Schauen wir uns dazu zunächst an, was ein Quant eigentlich ist.
Tunneleffekt – Quanten
Den Begriff der Quantenphysik hat jeder sicherlich schon mal gehört: Quantencomputer, Quantenwelt und Quantensprung. Aber was genau ist eigentlich ein Quant?
Quanten sind die kleinsten bekannten physikalischen Objekte, zum Beispiel Photonen oder Elektronen. Sie können nur ganz bestimmte physikalische Werte annehmen, die als Quantenzustand bezeichnet werden. Mit der Quantenphysik wird versucht, die Phänomene kleinster Teilchen zu erklären, die sich nicht durch die Gesetze der klassischen Physik beschreiben lassen.
Ein Beispiel für einen solchen Quantenzustand ist der Energiezustand eines Elektrons in einem Atom. Elektronen können dort nämlich nur ganz bestimmte (diskrete) Energiezustände einnehmen. Diese Energiezustände sind "quantisiert".
Schau dir dazu am besten unseren Artikel zum Thema Atomarer Energieaustausch an.
Der Wellen-Teilchen-Dualismus
Einer der wohl bemerkenswertesten Eigenschaften von Quantenobjekten ist ihre Doppelnatur: In der Quantenphysik löst sich nämlich die Grenze zwischen Welle und Teilchen auf. Je nach Messung kann ein Quant, wie das Elektron, sich entweder wie eine Welle oder wie ein Teilchen verhalten.
Als
Wellen-Teilchen-Dualismus wird das quantenmechanische Phänomen bezeichnet, das ein Quantenobjekt je nach Messung entweder Eigenschaften einer Welle oder eines Teilchens aufweist. Quantenobjekte besitzen also eine
Doppelnatur.
Wie kann diese Doppelnatur nachgewiesen werden? Schau dir dazu am besten unsere Artikel zum berühmten Doppelspaltexperiment und zum Photoelektrischen Effekt an!
Das bedeutet, dass du zum Beispiel ein Elektron nicht nur als Teilchen, sondern auch als Welle beschreiben kannst. Die Wellenlänge des Elektrons kannst du sogar mit der de Broglie Gleichung berechnen.
Wie das mit der de Broglie Gleichung funktioniert, zeigen wir dir im zugehörigen Artikel.
Die Aufenthaltswahrscheinlichkeit von Quanten
Im Alltag kannst du jedem Objekt einen bestimmten Ort zuweisen. Du kannst also ganz genau sagen, wo sich zum Beispiel ein Ball befindet. Ganz anders verhält es sich in der Quantenwelt. Dort kannst du nie genau sagen, wo sich genau ein Elektron aufhält. Du kannst lediglich eine Wahrscheinlichkeit bestimmen, mit der sich das Elektron in einem bestimmten Bereich befindet.
In der Quantenphysik kannst du den Ort eines Quants nur mit einer gewissen Wahrscheinlichkeit angeben. Die Aufenthaltswahrscheinlichkeit errechnet sich aus dem Betrag des Quadrats der Wellenfunktion. Die Aufenthaltswahrscheinlichkeit eines Quants wird also durch seine Welleneigenschaften bestimmt.
Je höher also die Amplitude der Quantenwelle an einem bestimmten Ort ist, desto wahrscheinlicher befindet sich das Quant auch dort.
Das Erstaunlichste daran ist, dass diese Wahrscheinlichkeit nirgendwo im Raum null ist. Das bedeutet, egal wo du nachschaust, gibt es zumindest eine winzig kleine Wahrscheinlichkeit, dass sich das Teilchen dort befindet. Auch hinter einer eigentlich unüberwindbaren Barriere.
Tunneleffekt – Der Quantentunnel
Damit sind wir schon beim Quantentunnel: Das Teilchen besitzt auch eine Wellennatur und damit eine Wahrscheinlichkeit, sich in einem bestimmten Bereich aufzuhalten. Diese Wahrscheinlichkeit ist am größten vor der Barriere, aber auch hinter der Barriere ist sie größer als null. Genau das zeigt dir die folgende Abbildung.
Abb. 2 - Wahrscheinlichkeitswelle beim Tunneleffekt
Die Amplitude der Quantenwelle ist am größten vor der Barriere. Dort befindet sich das Quant also mit der größten Wahrscheinlichkeit. In der Barriere nimmt die Amplitude stark ab und auch dahinter ist sie wesentlich kleiner als davor, aber nicht null. Damit gibt es eine Wahrscheinlichkeit, dass das Teilchen die Barriere einfach durchqueren kann.
Warum kannst du eigentlich nicht durch eine Barriere tunneln? Schließlich bestehst du doch aus kleinsten Quanten, die sich mit einer gewissen Wahrscheinlichkeit auf der anderen Seite der Wand befinden.
Rein theoretisch könntest du tatsächlich durch eine Wand tunneln! Es gibt nämlich eine Wahrscheinlichkeit, die nicht null ist, dass alle subatomaren Teilchen in deinem Körper gleichzeitig die Wand durchtunneln und du dich anschließend auf der anderen Seite der Wand befindest.
Bevor du jetzt allerdings gegen die Wand rennst, solltest du wissen, dass es statistisch gesehen weit über 14 Milliarden Jahre dauern wird – also länger als das Universum bereits existiert –, bis du die Wand vollständig durchquert hast.
Allerdings können nicht nur sehr kleine Teilchen, wie Quarks und Elektronen, den Tunneleffekt nutzen, auch Protonen und sogar Alphateilchen durchtunneln einige Barrieren.
Der Tunneleffekt beim Alpha-Zerfall
Beim Kernzerfall zerfällt ein größerer Atomkern in einen oder mehrere kleinere Atomkerne. Diese werden als Tochterkerne bezeichnet. Hierbei wird zwischen Alpha- , Beta- und Gammazerfall unterschieden.
Zu jedem dieser Zerfallsprozesse kannst du dir einen Artikel auf StudySmater ansehen.
Als Alphazerfall wird der Prozess bezeichnet, bei dem ein Atomkern ein sogenanntes Alphateilchen aussendet und damit zum Tochterkern wird. Dieses Alphateilchen besteht aus einem Helium-4-Kern mit zwei Protonen und zwei Neutronen. Die Emission (Aussendung) von Alphateilchen wird als Alphastrahlung bezeichnet.
Abb. 3 - Alpha-Zerfall
Grundsätzlich wirken auf der Ebene der Atome zwei Kräfte gegeneinander:
- Die Coulombkraft: Diese sorgt dafür, dass sich gleichnamige Ladungen (etwa die positiven Ladungen der Protonen im Kern) gegenseitig abstoßen.
- Die starke Kernkraft: Diese wirkt als Anziehungskraft zwischen Kernteilchen und hält die Neutronen und Protonen im Atomkern zusammen.
Wie kann das Alphateilchen nun der Wirkung der starken Kernkraft entkommen, die die Protonen und Neutronen im Atomkern zusammenhält?
Der Potenzialtopf und die Coulombbarriere
Die starke Kernkraft wirkt nur auf sehr, sehr kleine Distanzen. Innerhalb dieses Radius ist die starke Kernkraft stärker als die Coulombkraft. So halten die Protonen im Kern zusammen, obwohl sie sich eigentlich abstoßen. Außerhalb dieses Radius ist jedoch die Coulombkraft stärker und sorgt für die Abstoßung gleichnamiger Ladungen.
Als Coulombbarriere (Coulombwall) wird der Abstand bezeichnet, ab dem die Coulombkraft stärker als die starke Kernkraft wirkt und zur Abstoßung gleichnamiger Ladungen führt.
Dies siehst du schematisch veranschaulicht in der folgenden Abbildung. Der Bereich innerhalb der Coulombbarriere (dort, wo die starke Kernkraft wirkt) wird als Potenzialtopf bezeichnet.
Abb. 4 - Kräfte auf atomarer Ebene
Ein Alphateilchen muss also die Coulombbarriere überwinden, um dem Atomkern entkommen zu können. Dazu braucht es normalerweise eine sehr große Menge an kinetischer Energie, mehr als 26 MeV (Megaelektronenvolt). Alternativ kann das Alphateilchen auch den Tunneleffekt nutzen.
Nochmal zur Wiederholung: Teilchen besitzen eine Welleneigenschaft.
Aus dieser Welleneigenschaft lässt sich die Aufenthaltswahrscheinlichkeit des Alphateilchens bestimmen. Diese ist am größten innerhalb seines Potenzialtopfs. Aber es gibt auch eine gewisse Wahrscheinlichkeit, dass das Alphateilchen sich außerhalb des Potenzialtopfs aufhält.
Es kann seinen Potenzialtopf also einfach durchtunneln. Das siehst du in der folgenden Abbildung:
Abb. 5 - Alphateilchen im Potentialtopf
Aus der Wahrscheinlichkeit, dass das Alphateilchen innerhalb einer gewissen Zeitspanne den Atomkern verlässt, kannst du die Halbwertszeit berechnen.
Als Halbwertszeit wird die Zeitspanne bezeichnet, bis die Hälfte der radioaktiven Atome in einem Stoff zerfallen sind. Sie ist abhängig von der Wahrscheinlichkeit, mit der ein Alphateilchen mittels des Tunneleffekts den Kern verlässt.
So trägt der Tunneleffekt also zum Kernzerfall bei. Umgekehrt funktioniert dieser Prozess auch bei der Kernfusion im Inneren der Sonne.
Schau dir hierzu am besten unseren Artikel zum Thema Kernfusion an.
Anwendung des Tunneleffekts
Wir selbst können den Tunneleffekt also nicht wie Harry Potter nutzen, um eine Wand zu durchqueren. Dafür können wir in der Forschung mithilfe des Tunneleffekts neue Erkenntnisse gewinnen.
Tunneleffekt – Rastertunnelmikroskop
Normale Lichtmikroskope funktionieren nur, solange der Stoff, der untersucht wird, kleiner als die Wellenlänge des Lichts ist. Damit dürfen diese Stoffe nicht kleiner als 200 nm werden.
In der Biologie und der Materialtechnik werden Objekte allerdings deutlich kleiner. Wenn die Oberfläche eines Materials genau untersucht werden soll, braucht es neue Methoden, zum Beispiel das Rastertunnelmikroskop. Mit diesem kann sogar die atomare Struktur einiger Stoffe erkannt werden. Doch wie funktioniert das?
Mal angenommen, es soll die Oberfläche eines Eisenkristalls untersucht werden. Dazu wird ein solches Rastertunnelmikroskop verwendet. Dieses besitzt eine winzige Nadelspitze, die an ein sogenanntes Piezo-Röhrchen gebunden ist. Das Röhrchen sorgt dafür, dass die Nadelspitze exakt bewegt werden kann. Nun wird die Nadelspitze nah an der Oberfläche platziert– der Abstand zwischen Spitze und der Oberfläche des Eisenkristalls ist kleiner als ein Nanometer.
Zwischen der Nadel und der Oberfläche wird anschließend eine elektrische Spannung angelegt und der Stromfluss gemessen. Eigentlich sollte es hier nicht möglich sein, einen Strom zu messen. Zwischen Nadelspitze und Oberfläche befindet sich immerhin ein Abstand.
Jetzt kommt der Tunneleffekt ins Spiel:
Der Luftraum stellt gewissermaßen eine Potentialbarriere für die Elektronen dar, die diese überwinden müssen, damit ein Strom fließt. Das können die Elektronen mithilfe des Tunneleffekts. Sie durchtunneln den Abstand zwischen Oberfläche und Nadelspitze.
Abb. 6 - Aufbau des Rastertunnelmikroskops
Dieser Strom ist allerdings sehr sensibel. Je größer der Abstand, desto kleiner die Wahrscheinlichkeit für den Tunneleffekt. Wenn sich nun also Vertiefungen an der Oberfläche befinden, wird ein schwächerer Strom gemessen. Umgekehrt wird der Strom stärker, wenn sich eine Erhebung auf der Oberfläche befindet. Dadurch kann man sogar ein zusätzliches Atom auf der Oberfläche des Eisenkristalls ausmachen, wenn man die Spitze vorsichtig über die Probe bewegt.
Das Ergebnis siehst du in der folgenden Abbildung. Die kleinen Hügel auf der ansonsten glatten Oberfläche des Eisenkristalls sind Chromatome, die sich dort abgelagert haben.
Abbildung 7: Oberflächenstruktur eines Eisenkristalls mit Chromatomen Quelle: wikiwand.com
Der Tunneleffekt spielt also nicht nur in der Welt der Quanten eine wichtige Rolle. Auch wir können ihn vielfältig nutzen. Inzwischen wissen wir auch, dass der Tunneleffekt eine Rolle in biologischen Prozessen wie der Mutation von Genen spielt. Mit diesem Bereich beschäftigt sich der neue und spannende Zweig der Quantenbiologie.
Zuletzt stellt sich nur noch die Frage, ob die Zauberei in Harry Potter funktioniert, indem sie die Wahrscheinlichkeit für den Tunneleffekt auf 100 % erhöht haben. Was meinst du?
Tunneleffekt – Das Wichtigste
- Der Tunneleffekt ist ein quantenmechanisches Phänomen, bei welchem ein Quant eine Barriere durchqueren kann, obwohl ihm eigentlich die Energie zum Überqueren dieser Barriere fehlt.
- Quanten besitzen eine Doppelnatur, je nach Messung zeigen sie entweder Teilchen- oder Welleneigenschaften.
- Der Ort eines Teilchens lässt sich durch eine Wahrscheinlichkeit beschreiben, die abhängig von seiner Wellennatur ist.
- Der Tunneleffekt ist möglich, da sich Teilchen mit einer kleinen Wahrscheinlichkeit bereits hinter der Barriere aufhalten.
- Im subatomaren Bereich wirken zwei entgegengesetzte Kräfte: die Coulombkraft und die starke Kernkraft.
- Die Coulombkraft sorgt für die Abstoßung gleichnamiger Ladungen.
- Die starke Kernkraft bindet Protonen und Neutronen im Atomkern.
- Der Tunneleffekt spielt eine wichtige Rolle beim Alphazerfall und in der Kernfusion.
- Mit einem Rastertunnelmikroskop können wir die Oberflächenstruktur eines Materials auf atomarer Ebene erfassen. Dazu nutzen wir den Tunneleffekt.
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?
Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.
Content-Erstellungsprozess:
Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.
Lerne Lily
kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.
Lerne Gabriel
kennen