Activation Functions

Mobile Features AB

Aktivierungsfunktionen sind entscheidende Komponenten in neuronalen Netzwerken, die helfen, nicht-lineare Muster in den Daten zu erkennen. Sie entscheiden, ob ein Neuron aktiviert wird, indem sie Eingabewerte in Ausgaben transformieren. Häufig genutzte Funktionen sind die Sigmoid-Funktion, ReLU (Rectified Linear Unit) und die Hyperbolische Tangensfunktion, und sie beeinflussen direkt, wie gut ein Modell lernt.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

StudySmarter Redaktionsteam

Team Activation Functions Lehrer

  • 13 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 25.09.2024
  • 13 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 25.09.2024
  • 13 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Grundlagen der Aktivierungsfunktionen in der Informatik

    Aktivierungsfunktionen sind ein zentrales Element in der Informatik, insbesondere im Bereich des maschinellen Lernens. Sie helfen dabei, die Eingabedaten in nützliche Ausgaben umzuwandeln und entscheiden, ob Neuronen in einem neuronalen Netzwerk feuern.

    Die Rolle der Aktivierungsfunktionen

    Aktivierungsfunktionen bestimmen die Ausgabe eines Neurons basierend auf der Summe seiner Eingaben. Sie beeinflussen, ob ein Neuron innerhalb des Netzwerks weitergegeben wird oder nicht. Einige der wichtigsten Funktionen sind die Sigmoid-, Tanh- und ReLU-Funktion.

    Typen von Aktivierungsfunktionen

    Es gibt mehrere Arten von Aktivierungsfunktionen, jede mit ihren eigenen Vor- und Nachteilen. Hier sind einige der am häufigsten verwendeten:Sigmoid: Diese Funktion gibt Werte zwischen 0 und 1 zurück. Sie ist besonders in der Ausgabeebene nützlich, wo Wahrscheinlichkeiten vorhergesagt werden.Tanh: Ähnlich wie die Sigmoid-Funktion, gibt jedoch Werte zwischen -1 und 1 zurück. Dies hilft, die Gradientenexplosion zu vermeiden.ReLU (Rectified Linear Unit): Gibt Null zurück, wenn der Wert unter Null liegt, und den Wert selbst, wenn er darüber liegt. Sie ist bekannt für ihre Einfachheit und effiziente Berechnung.

    Obwohl ReLU sehr populär ist, kann sie in manchen Fällen zu einem Problem namens „Dying ReLU“ führen, wo Neuronen nie aktiv werden.

    Beispiel: Angenommen, Du implementierst ein neuronales Netzwerk zur Bilderkennung. Hier könnte die ReLU-Funktion im versteckten Layer verwendet werden, um lineare Beziehungen zu verstärken, während im letzten Layer eine Sigmoid-Funktion für die Klassifizierung benutzt wird.

    Ein tieferes Verständnis der Aktivierungsfunktionen erfordert, auf fortgeschrittene Varianten wie Leaky ReLU und Softmax einzugehen. Leaky ReLU löst das Problem der „Dying ReLU“ durch die Einführung eines kleinen Neigungsabschnitts auf der negativen Seite. Softmax hingegen wird oft in der Ausgabeebene für Multi-Klassen-Klassifikationen verwendet, da sie eine Wahrscheinlichkeitsverteilung über unterscheidbare Klassen bietet.

    Aktivierungsfunktion in neuronalen Netzwerken: Eine Einführung

    In neuronalen Netzwerken spielen Aktivierungsfunktionen eine entscheidende Rolle. Sie helfen dabei, die Neuronen zu aktivieren und zu bestimmen, welche Signale im Netzwerk weitergeleitet werden. Du wirst verstehen, warum diese Funktionen so wichtig sind, während Du Dich durch die verschiedenen Typen und ihre mathematischen Grundlagen arbeitest.

    Mathematische Grundlagen der Aktivierungsfunktionen

    Aktivierungsfunktionen ermöglichen es neuronalen Netzwerken, komplexe Muster zu lernen. Hier sind einige mathematische Beispiele:

    • Sigmoid-Funktion: Die Sigmoid-Funktion ist durch die Formel \(\sigma(x) = \frac{1}{1+e^{-x}}\) definiert. Sie transformiert beliebige Werte in einen Bereich zwischen 0 und 1.
    • Tanh-Funktion: Diese Funktion wird beschrieben durch \(\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\), was zu Werten zwischen -1 und 1 führt.
    • ReLU-Funktion: ReLU steht für „Rectified Linear Unit“ und kann als \(f(x) = \max(0, x)\) beschrieben werden.

    Um die Effektivität der ReLU-Funktion während des Trainings zu verbessern, könntest Du experimentell die Leaky ReLU verwenden.

    Beispiel zur Anwendung: Wenn Du ein neuronales Netzwerk implementierst, um handgeschriebene Ziffern zu erkennen, kannst Du die Tanh-Funktion in der versteckten Schicht verwenden, um eine ausgeglichene Darstellung der Daten zu erzielen.

    Ein tiefer Einblick in Aktivierungsfunktionen zeigt, dass sie nicht nur einfache mathematische Transformationen darstellen. Zum Beispiel kann die Softmax-Funktion verwendet werden, um die letzte Schicht eines neuronalen Netzwerks in eine Wahrscheinlichkeitsverteilung für eine Multi-Klassen-Klassifikation zu verwandeln.Die Formel für die Softmax-Funktion lautet:\[softmax(x_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}}\]Diese Funktion stellt sicher, dass die Ausgangswerte in einer Summe von 1 normalisiert werden, was sie ideal für Klassifikationsprobleme macht.

    Softmax Aktivierungsfunktion: Anwendung und Bedeutung

    Die Softmax Aktivierungsfunktion ist eine wichtige Methode in neuronalen Netzwerken, insbesondere in Aufgaben der Multi-Klassen-Klassifikation. Durch die Umwandlung von Rohwerten in Wahrscheinlichkeiten hilft Softmax sicherzustellen, dass die Summe aller Wahrscheinlichkeiten einer bestimmten Ausgabeschicht 1 beträgt.

    Mathematische Formulierung der Softmax Funktion

    Die Softmax Funktion transformiert einen Vektor von Zahlen in eine Wahrscheinlichkeitsverteilung. Dies wird durch die folgende Formel beschrieben:\[softmax(x_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}}\]Hierbei stellt \(e^{x_i}\) die Exponentialfunktion von \(x_i\) dar und \(\textstyle \sum_{j} e^{x_j} \) die Summe aller Exponentialwerte des Eingabewertes. Diese Funktion ist besonders nützlich in der Ausgabeschicht neuronaler Netzwerke, wo sie hilft, probabilistische Vorhersagen zu erzeugen.

    Softmax Funktion: Eine mathematische Funktion, die einen Vektor von Zahlen in einen Vektor von Wahrscheinlichkeiten umwandelt. Sie stellt sicher, dass die Wahrscheinlichkeiten in Summe 1 ergeben.

    Anwendungsbereiche der Softmax Funktion

    Die Softmax Aktivierungsfunktion ist in vielen Bereichen des maschinellen Lernens von Bedeutung:

    • Klassifikation von Bildern: Bei der Bildklassifikation wird die Softmax Funktion verwendet, um vorherzusagen, zu welcher Klasse (z.B. Hund, Katze) ein Bild gehört.
    • Textklassifizierung: In Anwendungen der natürlichen Sprachverarbeitung hilft sie, Text in verschiedene Kategorien einzuordnen, etwa in Spam oder Nicht-Spam.
    • Spracherkennung: Verwendung in Spracherkennungssystemen, um die gegebene Eingabe als ein bestimmtes Wort zu klassifizieren.

    Beispiel: Angenommen, Du entwickelst ein neuronales Netzwerk, das handgeschriebene Ziffern klassifiziert. Die Ausgabeebene könnte die Softmax Aktivierungsfunktion verwenden, um die Wahrscheinlichkeiten jeder möglichen Ziffer (0-9) zu berechnen und die Ziffer mit der höchsten Wahrscheinlichkeit auszuwählen.

    Die Verwendung von Softmax in der Ausgabeschicht eines neuronalen Netzwerks kann leicht angepasst werden, um mit Hilfe von optimierten Optimierungsalgorithmen, wie AdaGrad oder Adam, die Netzwerkleistung zu steigern.

    Ein tieferes Verständnis offenbart, dass Softmax eine entscheidende Rolle in fortgeschrittenen Architekturen wie Deep Learning Modellen spielt, die mehrere Klassen vorhersagen. Ein interessantes Merkmal von Softmax ist, dass es nicht direkt schrittweise lernt, sondern durch Backward-Propagation die Gradienten berechnet. Diese Information fließt zurück durch vorherige Schichten, um die Gewichte des neuronalen Netzwerks zu optimieren. Mathematik spielt hier eine zentrale Rolle, da die Ableitung der Verlustfunktion bezüglich der Parameter die Richtung bestimmt, in die sich die Gewichte bei jedem Schritt bewegen. Durch die Softmax-Funktion wird die Kreuzentropie-Verlustfunktion oft als Loss-Konzept verwendet, um Fehler zu messen und das Netzwerk zu trainieren.

    Rectified Linear Unit Activation Function im Detail

    Die Rectified Linear Unit (ReLU) ist eine der am häufigsten verwendeten Aktivierungsfunktionen in künstlichen neuronalen Netzwerken aufgrund ihrer Einfachheit und Effizienz. Sie hebt negative Werte auf und überträgt positive Eingangswerte unverändert. Dies wirkt der Sättigung entgegen, die in anderen Aktivierungsfunktionen auftreten kann. Aufgrund ihrer Natur hilft die ReLU-Funktion dabei, die Berechnung im Netzwerk zu beschleunigen und die Trainingseffizienz zu verbessern.

    ReLU Funktion: Eine Aktivierungsfunktion, definiert als \(f(x) = \max(0, x)\), die alle negativen Eingaben auf Null setzt.

    Die ReLU-Funktion ist besonders effektiv in tiefen neuronalen Netzwerken, da sie die sparsamen Aktivierungen fördert.

    Vorteile von Rectified Linear Unit Activation Functions

    ReLU hat sich weit verbreitet in tiefen neuronalen Netzwerken aufgrund mehrerer Schlüsselvorteile:

    • Effizienz: Die Berechnung ist einfach und effizient, da sie keine exponentiellen Berechnungen benötigt, wie es bei Sigmoid- oder Tanh-Funktionen der Fall ist.
    • Schnelles Training: ReLU fördert schnelles Training und bessere Konvergenzverhalten durch lineare nicht-saturierende Form.
    • Sparsames Modell: Viele Neuronen werden in einem bestimmten Netzwerkzug als „ausgeschaltet“ oder inaktiv, was zu sparsamen Darstellungen führt.

    Beispiel zur Implementierung:

    def relu(x):   return max(0, x)
    In diesem Code wird die ReLU-Aktivierungsfunktion in Python gezeigt, die sich einfach durch Nutzen der eingebauten max-Funktion implementieren lässt.

    Nachteile und Herausforderungen bei Rectified Linear Unit Activation Functions

    Obwohl ReLU zahlreiche Vorteile bietet, gibt es auch Herausforderungen, die bei ihrer Anwendung auftreten können:

    • „Dying ReLU Problem“: In bestimmten Fällen können Neuronen dauerhaft inaktiv werden, was das Lernen im Netzwerk behindert.
    • Gradientenreduktion: Da die Funktion für negative Werte Null ist, kann eine Reduktion des Gradientenflusses auftreten, was die Aktualisierung von Gewichten verhindert.
    • Sensitivität bei negativen Einflüssen: ReLU-Neuronen eignen sich möglicherweise nicht für Daten mit stark negativen Attributen oder Offsets.

    Eine Möglichkeit, das „Dying ReLU Problem“ zu beheben, ist die Verwendung der Leaky ReLU, die im Fall einer negativen Eingabe einen kleinen, positiven Gradienten beibehält:\[f(x) = \begin{cases} x, & \text{wenn } x > 0 \ \text{leak} \times x, & \text{wenn } x \leq 0 \end{cases}\]Diese Anpassung ermöglicht es, dass der Gradient auch für negative Eingabewerte nicht vollständig verschwindet, was dazu beiträgt, die Gewichte im Netzwerk weiter zu optimieren und das Lernen fortzusetzen.

    Sigmoid Aktivierungsfunktion: Charakteristika

    Die Sigmoid Aktivierungsfunktion ist eine beliebte Funktion in der Informatik, vor allem im Bereich des maschinellen Lernens für neuronale Netzwerke. Sie zeichnet sich dadurch aus, dass sie Eingabewerte in einen Bereich zwischen 0 und 1 transformiert, was sie ideal für binäre Klassifikationsprobleme macht.

    Funktionsweise der Sigmoid Activation Function

    Die mathematische Beschreibung der Sigmoid-Funktion ist wie folgt definiert:\[ \sigma(x) = \frac{1}{1 + e^{-x}} \]Diese Formel zeigt, dass die Funktion exponentiell ansteigt und für Werte nahe Null besonders empfindlich ist. Sie hat den Vorteil, eine glatte Ableitung zu haben, die das Training von neuronalen Netzwerken durch Rückwärtspropagation erleichtert. Ein weiterer Vorteil der Sigmoid-Funktion ist ihre Eigenschaft der Differenzierbarkeit an jedem Punkt, was für die Optimierung wichtig ist. Dennoch kann sie in tiefen Netzwerken zur Gradientenexplosion führen.

    Beispiel zur Berechnung:Nehmen wir den Eingabewert x = 0.5. Die Berechnung der Sigmoid-Funktion ergibt sich zu:\[ \sigma(0.5) = \frac{1}{1 + e^{-0.5}} \approx 0.622 \]Dies verdeutlicht, wie die Funktion einen Wert knapp über 0.5 in einen Ausgangswert von ungefähr 0.622 transformiert.

    Die Sigmoid-Funktion wird oft in der letzten Schicht eines neuronalen Netzwerks für die binäre Klassifikation verwendet, da ihre Ausgaben als Wahrscheinlichkeiten interpretiert werden können.

    Einsatzmöglichkeiten der Sigmoid Activation Function

    Die Verwendung der Sigmoid Aktivierungsfunktion variiert je nach Anwendung. Hier sind einige Bereiche, in denen sie häufig eingesetzt wird:

    • Binäre Klassifikation: Eine der häufigsten Anwendungen ist die Endschicht von Klassifikationsmodellen, wo sie verwendet wird, um Ausgaben als Wahrscheinlichkeiten zu interpretieren, ob ein Beispiel zu einer bestimmten Klasse gehört.
    • Logistische Regression: Die Sigmoid-Funktion bildet das Herzstück der logistischen Regression, eines fundamentalen Modells für binäre Klassifikationsaufgaben.
    • Feature Transformation: Sie kann auch für die Normalisierung von Eingabefaktoren in neuronalen Netzen genutzt werden, um die Eigenspannungen in einem Dataset auszugleichen.
    Diese Anwendungen machen sie zu einem allgegenwärtigen Werkzeug bei der Erstellung robuster maschineller Lernmodelle.

    Um ein besseres Verständnis zu erlangen, warum die Sigmoid-Funktion weniger in tiefen Netzwerken verwendet wird, kann man das Problem der Gradientenexplosion betrachten. Aufgrund der nicht-linearen Natur der Sigmoid-Funktion nähern sich Gradienten bei großen Eingabewerten der Sättigung an, was zum Verlust von wertvollen Informationen im Training führen kann.Eine häufig eingesetzte Alternative ist die hypertangentielle Funktion (Tanh), die ebenfalls s-förmig ist, jedoch Werte zwischen -1 und 1 statt zwischen 0 und 1 ausgibt. Ihre Erweiterungen tragen zudem zur Reduktion dieses Problems bei und fördern ein schnellere Konvergenz im Training.

    Tanh Aktivierungsfunktion: Unterschiede zur Sigmoid

    Die Tanh Aktivierungsfunktion ist eine erweiterte Version der Sigmoidfunktion und wird häufig in tiefen neuronalen Netzwerken verwendet. Sie skaliert Eingabewerte in einen Bereich zwischen -1 und 1, was einige entscheidende Vorteile gegenüber der Sigmoidfunktion bietet.

    Vergleich zwischen Tanh Aktivierungsfunktion und Sigmoid Aktivierungsfunktion

    Sowohl die Tanh- als auch die Sigmoid-Aktivierungsfunktion teilen die Eigenschaft, dass sie s-förmig sind. Dennoch weisen sie grundsätzliche Unterschiede auf:1. Skalierungsbereich: - **Sigmoid:** Transformiert Eingabewerte in den Bereich zwischen 0 und 1. - **Tanh:** Skaliert in den Bereich zwischen -1 und 1, was zum Ausgleich von Daten führt.2. Gradientenproblem: - **Sigmoid:** Kann zu Gradientenexplosionsproblemen führen, besonders bei großen Werten. - **Tanh:** Reduziert diese Problematik durch die Ausdehnung auf negative Werte, was effektivere Trainingsergebnisse ermöglicht.

    Tanh Funktion: Eine mathematische Funktion dargestellt durch \(\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\), welche die Eingaben zwischen -1 und 1 transformiert.

    Beispiel für die Anwendung:Betrachten wir x = 1. Die Berechnung der Tanh-Funktion ergibt:\[ \tanh(1) = \frac{e^{1} - e^{-1}}{e^{1} + e^{-1}} \approx 0.761 \]Dies demonstriert, wie die Tanh-Funktion Eingabewerte in einen symmetrischen Bereich um Null zentriert.

    Die Tanh-Funktion kann die Trainingszeit verkürzen, da sie die Währungen der Neuronen im Netzwerk zentriert, was einen stabileren Gradientenfluss ermöglicht.

    Vorteile der Tanh Aktivierungsfunktion in neuronalen Netzwerken

    Der Einsatz der Tanh Aktivierungsfunktion in neuronalen Netzwerken bietet diverse Vorteile:

    • Zentrierte Aktivierung: Da Tanh die Ausgabe zwischen -1 und 1 skaliert, stellt es sicher, dass die Aktivierungen näher bei Null sind. Dies kann die Konvergenz des Netzwerks verbessern.
    • Verbesserte Modellwirkung: Durch den symmetrischen Skalierungsbereich hilft die Tanh-Funktion, die Mittelwertvorspannung zu reduzieren, was bessere Modellierungen bei komplexen Daten ermöglicht.
    • Effizientere Gradientenberechnung: Im Vergleich zur Sigmoidfunktion bietet die tanh-Aktivierung schärfere Übergänge, was die Gradientensättigung minimiert.

    Ein tieferes Verständnis der Tanh-Funktion zeigt, dass sie in Kombination mit Methoden wie Batch Normalization ihre Wirksamkeit steigern kann. Batch Normalization normalisiert die Eingabewerte, bevor sie der Aktivierungsfunktion zugeführt werden, was der Gradientenexplosion entgegenwirkt und das Training weiter beschleunigt. Mathematik und maschinenlernende Strategien vermischen sich hier: Die vorangehende Transformation der Eingabedaten durch Junction Layers kann die Effizienz der Tanh-Funktion unterstreichen, indem versteckte Schichten besser gewichtet werden.

    Activation Functions - Das Wichtigste

    • Aktivierungsfunktionen: Wesentlich in der Informatik, um Neuronen in einem neuronalen Netzwerk zu steuern, basierend auf Eingaben.
    • Sigmoid Aktivierungsfunktion: Transformiert Eingaben in Werte zwischen 0 und 1, geeignet für binäre Klassifikationsprobleme, aber kann Gradientenexplosion verursachen.
    • Tanh Aktivierungsfunktion: Skaliert Eingaben zwischen -1 und 1, effizienter als Sigmoid in tiefen Netzwerken, minimiert Sättigungseffekte.
    • Rectified Linear Unit (ReLU): Beliebte Aktivierungsfunktion, die negativ Werte auf Null setzt, fördert sparsames Modell, aber anfällig für „Dying ReLU“ Problem.
    • Softmax Aktivierungsfunktion: Wendet sich auf einen Vektor an, um Wahrscheinlichkeitsverteilungen zu erzeugen, ideal für Multi-Klassen-Klassifikationen.
    • Grundlagen der Aktivierungsfunktionen in der Informatik: Aktivierungsfunktionen bestimmen die Aktivierungen in neuronalen Netzwerken und beeinflussen die Modellleistung und Trainingseffizienz.
    Häufig gestellte Fragen zum Thema Activation Functions
    Welche Rolle spielen Aktivierungsfunktionen in neuronalen Netzen?
    Aktivierungsfunktionen in neuronalen Netzen entscheiden, ob ein Neuron aktiviert wird, indem sie eine nicht-lineare Transformation auf die Eingaben anwenden. Sie helfen, komplexe Muster zu lernen, indem sie es ermöglichen, dass das Netzwerk nicht-lineare Beziehungen modelliert. Häufig verwendete Funktionen sind ReLU, Sigmoid und Tanh. Sie beeinflussen die Effizienz und Genauigkeit des Lernprozesses.
    Welche verschiedenen Arten von Aktivierungsfunktionen gibt es und welche eignen sich für welchen Zweck?
    Es gibt mehrere Arten von Aktivierungsfunktionen: ReLU (Rectified Linear Unit) eignet sich gut für tiefe Netzwerke durch sparsames Aktivieren. Sigmoid und Tanh sind nützlich für binäre Klassifikationen oder im Output-Layer. Softmax wird häufig in der letzten Schicht für multi-klassen Klassifikationen verwendet. Jedes hat spezifische Anwendungsfälle basierend auf dem Netzwerktyp.
    Wie beeinflussen Aktivierungsfunktionen die Trainingsgeschwindigkeit eines neuronalen Netzwerks?
    Aktivierungsfunktionen beeinflussen die Trainingsgeschwindigkeit eines neuronalen Netzwerks, indem sie die Weiterleitung von Signalen und die Berechnung von Gradienten steuern. Funktionen wie ReLU beschleunigen das Training durch sparsames Aktivieren und Vermeidung von Vanishing-Gradient-Problemen im Vergleich zu Sigmoid oder Tanh, die langsamer sein können.
    Wie wählt man die passende Aktivierungsfunktion für ein bestimmtes neuronales Netzwerk aus?
    Die Wahl der Aktivierungsfunktion hängt vom Netzwerktyp und dem spezifischen Anwendungsfall ab. Für ein verstecktes Schicht-Netzwerk verwendest Du oft ReLU aufgrund seiner Einfachheit und Effizienz. Sigmoid- oder Tanh-Funktionen eignen sich für Ausgabeschichten bei binären Klassifikationen. Bei tieferen Netzen können Varianten wie Leaky ReLU oder Swish nützlich sein, um das Vanishing-Gradient-Problem zu vermeiden.
    Wie wirken sich Aktivierungsfunktionen auf die Genauigkeit eines neuronalen Netzwerks aus?
    Aktivierungsfunktionen beeinflussen die Genauigkeit eines neuronalen Netzwerks, indem sie Nichtlinearität einführen und so komplexe Muster lernen lassen. Sie helfen bei der Gradientenausbreitung und verhindern Probleme wie den verschwindenden Gradient, was zu stabilerer und effektiverer Modelloptimierung führt. Die richtige Wahl kann die Trainingsleistung erheblich verbessern.
    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welchen Skalierungsbereich hat die Tanh-Aktivierungsfunktion?

    Was ist ein Hauptproblem der Sigmoid Aktivierungsfunktion in tiefen Netzwerken?

    Welche mathematische Formel beschreibt die Softmax Funktion?

    Weiter
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Informatik Studium Lehrer

    • 13 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren