Bilddateninterpretation

Die Bilddateninterpretation bezieht sich auf die Analyse und das Verständnis von visuellen Informationen, die durch digitale Bildverarbeitungstechniken gewonnen werden. Dabei kommen Algorithmen und maschinelles Lernen zum Einsatz, um Muster, Objekte und relevante Details in Bildern zu identifizieren und zu interpretieren. Diese Fähigkeit ist besonders in Bereichen wie Medizin, Überwachung und autonomem Fahren von großer Bedeutung, da sie hilft, wichtige Entscheidungen auf der Grundlage visueller Daten zu treffen.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

StudySmarter Redaktionsteam

Team Bilddateninterpretation Lehrer

  • 12 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Bilddateninterpretation im Studium der Künstlichen Intelligenz

    Die Fähigkeit, Bilddaten zu interpretieren, ist ein zentraler Bestandteil des Studiums der Künstlichen Intelligenz (KI). Mit der fortschreitenden Entwicklung von Algorithmen zur Bilderkennung wird dieses Thema immer relevanter.In den folgenden Abschnitten erhältst Du einen Überblick über die grundlegenden Themen der Bilddateninterpretation und die verschiedenen Algorithmen, die zur Verarbeitung dieser Daten verwendet werden.

    Grundlagen der Bilddateninterpretation

    Die Bilddateninterpretation umfasst viele Prozesse, durch die visuelle Informationen in verständliche und verarbeitbare Daten umgewandelt werden. Hier sind einige der grundlegenden Konzepte:

    • Pixel: Die kleinste Einheit eines Bildes.
    • Auflösung: Bestimmt, wie viele Pixel ein Bild hat, was wiederum die Detailgenauigkeit beeinflusst.
    • Farbtiefe: Gibt an, wie viele Farben in einem Bild verfügbar sind.
    • Bildebenen: Verschiedene Schichten eines Bildes, die unterschiedliche Informationen enthalten können.
    Durch das Verständnis dieser Grundkomponenten kannst Du besser nachvollziehen, wie komplexe Bildverarbeitungsalgorithmen arbeiten. Ein einfaches Beispiel für die Bilddateninterpretation ist die Umwandlung eines Farbfotos in ein Schwarzweißbild, indem der RGB-Farbwert jedes Pixels in einen Grauwert umgewandelt wird.

    Die Umwandlung eines Bildes in ein anderes Format beginnt oft mit der Analyse der grundlegenden Eigenschaften, wie z. B. der Pixelwerte.

    Ein interessantes Konzept in der Bilddateninterpretation ist das Feature-Extraction (Merkmalsextraktion). Dabei handelt es sich um Techniken zur Auswahl und Kombination von Variablen, die am maßgeblichsten zu den visuellen Daten beitragen. Häufig werden hier mathematische Transformationen genutzt. Ein gängiges Verfahren ist das Anwenden von Convolutional Neural Networks (CNN), die in der Lage sind, wesentliche Merkmale eines Bildes wie Kanten, Formen und Muster zu extrahieren. Ein CNN besteht aus mehreren Schichten, darunter die Convolutional-, ReLU- und Pooling-Schichten, die alle eine spezifische Rolle bei der Verarbeitung der Bilddaten spielen.Die mathematische Darstellung der Convolution in einem CNN erfolgt häufig durch die Gleichung:\[(s \ast w)[i, j] = \sum_{m} \sum_{n} s[m, n] \cdot w[i-m, j-n]\]In dieser Gleichung steht \(s\) für das Eingabebild und \(w\) für den Filterkern. Die Faltung \(\ast\) generiert ein Aktivierungskartenbild, das hilft, die Merkmale hervorzuheben.

    Algorithmen zur Bildinterpretation verstehen

    Es gibt eine Vielzahl von Algorithmen, die speziell zur Interpretation von Bildern entwickelt wurden. Einige der bekanntesten Algorithmen sind:

    • Convolutional Neural Networks (CNNs): Besonders effektiv für die Bildklassifikation und Objekterkennung.
    • Generative Adversarial Networks (GANs): Werden verwendet, um neue, realistische Bilder zu generieren.
    • Edge Detection: Ein grundlegendes Verfahren zum Erkennen der Kanten innerhalb eines Bildes.
    Jeder dieser Algorithmen basiert auf mathematischen Modellen, die ihnen erlauben, spezifische Muster innerhalb von Bilddaten zu erkennen und zu verstehen. Beispielsweise basiert die Richtungsableitung, die bei der Kantenerkennung verwendet wird, auf der mathematischen Berechnung von Ableitungen in einem Bild. Diese Ableitungen helfen dabei, Änderungen in der Intensität der Pixelwerte zu erkennen.Ein einfaches TensorFlow-Beispiel zur Anwendung eines CNNs wäre:
    import tensorflow as tfmodel = tf.keras.models.Sequential([  tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(64, 64, 3)),  tf.keras.layers.MaxPooling2D((2, 2)),  tf.keras.layers.Flatten(),  tf.keras.layers.Dense(64, activation='relu'),  tf.keras.layers.Dense(10, activation='softmax')])
    Letztlich ist das Verständnis der grundlegenden Algorithmen zur Bildinterpretation entscheidend, um die Innovationsmöglichkeiten im Bereich der Künstlichen Intelligenz voll auszuschöpfen.

    Bildverarbeitung Techniken in der Informatik

    Die Bildverarbeitung in der Informatik umfasst eine Vielzahl von Techniken, die es Maschinen ermöglichen, visuelle Daten zu verarbeiten und zu verstehen. Diese Techniken sind entscheidend für die Entwicklung fortschrittlicher Anwendungen in Bereichen wie Sicherheit, Medizin und autonomes Fahren.Im Folgenden werden zentrale Themen der Bildanalyse sowie deren Anwendungen beleuchtet.

    Bildanalyse Informatik und Anwendungen

    Die Bildanalyse in der Informatik spielt eine essentielle Rolle bei der Auswertung und Interpretation von Bildern. Einige der typischen Anwendungen sind:

    • Medizinische Bildgebung: Diagnose und Überwachung von Krankheiten mittels MRT- und CT-Bildern.
    • Überwachungssysteme: Einsatz von Sicherheitskameras zur Erkennung von Eindringlingen.
    • Autonome Fahrzeuge: Verwendung von Kameras, um Objekte auf der Straße zu identifizieren.
    • Forschung und Entwicklung: Ermittlungsarbeit z.B. in Astronomie durch Analyse von Weltraumbildern.

    Bildanalyse bezeichnet den Prozess, bei dem Computer verwendet werden, um aus Bildern Informationen zu extrahieren, die oft für die Entscheidungsfindung genutzt werden.

    Ein praktisches Beispiel für die Bildanalyse ist die Objekterkennung in Überwachungskameras. Moderne Algorithmen können bestimmte Muster, Formen oder sogar spezifische Personen in Echtzeit erkennen und entsprechende Maßnahmen ergreifen.

    In der Forschung zur Bildanalyse werden oft Machine Learning Algorithmen eingesetzt, um Muster in großen Datensätzen zu erkennen. Diese Algorithmen lernen aus zuvor gelabelten Daten, um zukünftige Bilder besser zu interpretieren. Eine gängige Technik ist die Verwendung von Clusteranalyse zur Gruppierung von Bilddaten, die ähnliche Merkmale aufweisen. Dieser Prozess hilft Wissenschaftlern, bedeutende Muster zu identifizieren, die andernfalls aufgrund der großen Datenmenge unentdeckt bleiben könnten.

    Künstliche Intelligenz Bilddaten analysieren

    Die Fortschritte in der Künstlichen Intelligenz (KI) haben die Bilddatenanalyse erheblich verbessert. KI nutzt neuronale Netze zur Verarbeitung und Analyse von Bildern, was zu einer höheren Genauigkeit und Effizienz führt.Einige der wesentlichen Vorteile der Verwendung von KI in der Bilddatenanalyse sind:

    • Automatische Erkennung und Klassifizierung von Objekten.
    • Schnelle Verarbeitung großer Bilddatenmengen.
    • Verbesserte Reaktion auf Umgebungssignale bei autonom fahrenden Fahrzeugen.

    Ein neuronales Netz ist ein datenverarbeitendes System, das von der Struktur und Funktionsweise des menschlichen Gehirns inspiriert ist und die Fähigkeit besitzt, durch Lernen Aufgaben zu lösen.

    Ein anschauliches Beispiel für KI in der Bilddatenanalyse ist das automatische Gesichtserkennungssystem. Diese Systeme können Gesichter in Bildern identifizieren und unterscheiden, indem sie gewisse Merkmale wie Augenabstand, Nasenform und Kinnlinie analysieren.

    Die Kombination aus KI und Bildanalyse ermöglicht neue Anwendungen, die bisher als zu komplex oder rechenintensiv galten.

    Ein faszinierendes Forschungsgebiet ist die Entwicklung von Generative Adversarial Networks (GANs), die nicht nur Bilder analysieren, sondern auch völlig neue Bilder erzeugen können. GANs bestehen aus zwei neuronalen Netzen: einem Generator und einem Discriminator. Der Generator erstellt neue Bilder, während der Discriminator versucht zu unterscheiden, ob sie echt oder künstlich sind. Dieser Wettstreit führt schließlich zu sehr realistischen Bildkreationen.Die GAN-Architektur kann mathematisch durch folgenden Algorithmus beschrieben werden:\[V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]\]Hierbei ist \(D(x)\) die Wahrscheinlichkeit, dass das Bild \(x\) echt ist, und \(G(z)\) repräsentiert das vom Generator erzeugte Bild. Diese Methode ermöglicht erstaunliche Anwendungen wie die fotorealistische Stiltransformation und kreative Bildkompositionen.

    Bilderkennung leicht erklärt für Einsteiger

    Die Bilderkennung ist ein wachsendes Feld in der Informatik, das Maschinen das Verständnis und die Verarbeitung visueller Daten ermöglicht. Sie ist wesentlich für Anwendungen, die von der Künstlichen Intelligenz profitieren, wie z.B. autonome Fahrzeuge und Bildklassifikationssysteme.

    Einfache Methoden der Bildanalyse

    Es gibt verschiedene grundlegende Methoden der Bildanalyse, die in der Praxis angewendet werden. Zu diesen Methoden gehören:

    • Histogrammausgleich: Eine Technik zur Verbesserung des Bildkontrasts.
    • Kantendetektion: Verfahren wie der Canny-Operator zur Erkennung von Kanten innerhalb eines Bildes.
    • Binarisierung: Umwandlung eines Farbbildes in ein Schwarz-Weiß-Bild, um es leichter analysierbar zu machen.
    Durch die Anwendung dieser Methoden können Bilder so aufbereitet werden, dass fortgeschrittene Algorithmen besser mit ihnen arbeiten können.

    Histogrammausgleich ist eine Bildbearbeitungstechnik, die den Kontrast eines Bildes verbessert, indem die Helligkeitswerte gleichmäßiger über den gesamten Bereich verteilt werden.

    Ein Beispiel für die Anwendung der Binarisierung ist die Umwandlung eines eingescannten Dokuments in ein Schwarz-Weiß-Format zur Optimierung der Textverarbeitung.

    Kantendetektionsalgorithmen sind oft der erste Schritt in der Bildanalyse, um signifikante Übergänge im Bild zu identifizieren.

    Ein interessanter Aspekt der Bildanalyse ist die Verwendung von Filteroperationen. Filter helfen, bestimmte Merkmale hervorzuheben oder zu unterdrücken. So kann ein Low-Pass-Filter verwendet werden, um Rauschen zu reduzieren, während ein High-Pass-Filter zur Verstärkung von Kanten dient. Technisch gesetzt wird ein High-Pass-Filter durch:

    import cv2import numpy as np# Bild einlesenimg = cv2.imread('image.jpg', 0)# Kernel definierenkernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])# Filter angewandtfiltered = cv2.filter2D(img, -1, kernel)
    Dies zeigt, wie sorgfältig Bilddaten angepasst werden können, um weitere Analysen zu erleichtern.

    Praktische Beispiele zur Bilderkennung

    Bilderkennung bietet praxisnahe Anwendungen, die in unseren Alltag integriert sind. Ein bemerkenswertes Beispiel ist die Automatische Nummernschilderkennung (ANPR), die oft in Parkhäusern und zur Verkehrskontrolle eingesetzt wird.Weitere spannende Anwendungsfälle sind:

    • Medizinische Diagnose: Identifikation von Anomalien in Röntgenbildern.
    • Suchmaschinen: Nutzung der Bilderkennung, um nach visuellen Inhalten zu suchen.
    • Sicherheitsanwendungen: Gesichtserkennungssysteme für Zugangskontrollen.

    Ein typisches Beispiel für die Algorithmen der Bilderkennung in Aktion ist die Gesichtserkennung in sozialen Medien, die automatisch Personen in hochgeladenen Bildern vorschlägt.

    Die Bilderkennung in sozialen Medien wird ständig verbessert, um sowohl die Nutzererfahrung zu verbessern als auch Sicherheitsmaßnahmen zu verstärken.

    Einer der faszinierendsten Fortschritte in der Bilderkennung ist die Entwicklung von Deepfake-Technologien. Diese Systeme verwenden künstliche Intelligenz, um realistisch aussehende Bild- und Videofälschungen zu erstellen. Durch die Anwendung tiefer neuronaler Netzwerke wie Autoencoder und Generative Adversarial Networks (GANs) erreichen sie verblüffend realistische Ergebnisse. Dies wird durch den Algorithmus, der gezielt Bilder und Videos modifiziert, erreicht:

    import deepfake# Initialisieren des Modellsmodel = deepfake.DeepfakeModel()# Trainiere das Modellmodel.train('input_images/', 'output_path/')
    Die Ethik und Sicherheit dieser Technologie bleibt eine Herausforderung, doch die Technik dahinter beeindruckt durch ihr Potenzial, visuelle Inhalte vollständig zu transformieren.

    Technologien und Werkzeuge zur Bilddateninterpretation

    In der modernen Informatik sind Technologien und Werkzeuge zur Bilddateninterpretation unverzichtbar geworden. Sie ermöglichen die Analyse, Verarbeitung und Interpretation großer Mengen visueller Daten, was für viele Anwendungen von entscheidender Bedeutung ist. Im Folgenden werden einige der wichtigsten Software-Tools und Projekte in diesem Bereich betrachtet.

    Software-Tools für Bildverarbeitung

    Verschiedene Software-Tools werden verwendet, um die Bildverarbeitung zu vereinfachen und zu optimieren. Diese Tools bieten verschiedene Funktionen, die es Entwicklern erleichtern, Bilddaten zu analysieren und zu interpretieren.

    ToolFunktionenAnwendung
    OpenCVBildbearbeitung, Kantendetektion, ObjekterkennungUniversell einsetzbar, von Hobbyprojekten bis zur wissenschaftlichen Forschung
    TensorFlowImplementierung neuronaler Netze, Deep LearningPrimär für Bildklassifikation und Mustererkennung
    MatlabSignal- und Bildverarbeitung, SimulationTechnische und wissenschaftliche Anwendungen

    Die Wahl des richtigen Tools hängt stark von den spezifischen Anforderungen Deines Projekts ab, daher lohnt sich ausführliche Recherche vor Projektbeginn.

    Ein interessantes Beispiel ist die Anwendung von OpenCV in der Gesichtserkennung. Dieses Framework bietet zahlreiche Funktionen, um fortgeschrittene Bildverarbeitungstechniken zu implementieren. Beispielsweise kannst Du Filter für die Kantendetektion anwenden, indem Du den folgenden Python-Code nutzt:

    import cv2img = cv2.imread('bild.jpg')edges = cv2.Canny(img, 100, 200)cv2.imshow('Edges', edges)cv2.waitKey(0)cv2.destroyAllWindows()
    Mit diesem einfachen Skript kannst Du die Kanten in einem Bild hervorheben, was nützlich ist, um Strukturen oder Objekte innerhalb der Bilddaten zu analysieren.

    Projekte und Anwendungen in der Bilddateninterpretation

    Projekte in der Bilddateninterpretation finden in diversen Branchen Anwendung, von der Gesundheitsversorgung bis zur Automatisierung im Verkehr. Einige herausragende Projekte umfassen:

    • Medizinische Diagnose: KI-gestützte Systeme identifizieren Krankheiten durch die Analyse medizinischer Bilddaten.
    • Autonomes Fahren: Bildverarbeitungssysteme helfen Autos, ihre Umgebung wahrzunehmen und auf Verkehrsverhältnisse zu reagieren.
    • Landwirtschaft: Drohnen überwachen Felder und helfen Landwirten, den Gesundheitszustand von Pflanzen zu überwachen.

    Ein bemerkenswertes Beispiel ist die KI-gestützte Früherkennung von Glaukomen, bei der Algorithmen Bilddaten des Auges analysieren, um Anzeichen der Krankheit zu erkennen, bevor physische Symptome auftreten.

    Die Integration von Bildverarbeitung in mobilen Anwendungen ermöglicht die Umsetzung von Projekten direkt auf Smartphones, was neue Möglichkeiten für Innovationen bietet.

    Ein weiteres spannendes Projekt ist die Entwicklung von sogenannten Smart-Cameras, die in Echtzeit Bilddaten analysieren und interpretieren. Solche Systeme sind besonders in der Sicherheitsbranche gefragt, wo sie zur Erkennung verdächtiger Aktivitäten verwendet werden. In diesem Szenario wendet die Kamera Algorithmen zur Mustererkennung an, die von lernenden neuronalen Netzwerken trainiert wurden, um Ereignisse automatisch zu klassifizieren. Ein grundlegendes neuronales Netzwerk in Python könnte wie folgt aussehen:

    import tensorflow as tfmodel = tf.keras.Sequential([  tf.keras.layers.Dense(128, activation='relu', input_shape=(100,)),  tf.keras.layers.Dense(64, activation='relu'),  tf.keras.layers.Dense(10, activation='softmax')])model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    Diese Art von Innovation zeigt die Kraft der Bilddateninterpretation in Kombination mit modernen Technologien und wie sie dazu beitragen kann, alltägliche Probleme zu lösen.

    Bilddateninterpretation - Das Wichtigste

    • Bilddateninterpretation: Umwandlung visueller Informationen in verarbeitbare Daten durch Techniken der Bildverarbeitung.
    • Algorithmen zur Bildinterpretation: Umfassen CNNs, GANs und Kantenerkennungsverfahren zur Bildklassifikation und -erzeugung.
    • Bildanalyse Informatik: Wird für Anwendungen wie medizinische Bildgebung und autonome Fahrzeuge genutzt.
    • Bildverarbeitung Techniken: Techniken wie Histogrammausgleich und Binarisierung zur Verbesserung der Bildqualität.
    • Künstliche Intelligenz Bilddaten: Nutzung von neuronalen Netzen zur Verarbeitung und detaillierten Analyse von Bilddaten.
    • Bilderkennung leicht erklärt: Grundlegende Methoden wie Kantendetektion und Objekterkennung zur Identifikation von Mustern.
    Häufig gestellte Fragen zum Thema Bilddateninterpretation
    Welche Berufsmöglichkeiten bietet die Spezialisierung auf Bilddateninterpretation im Informatik Studium?
    Die Spezialisierung auf Bilddateninterpretation im Informatikstudium eröffnet Berufsmöglichkeiten in der medizinischen Bildverarbeitung, autonomen Fahrzeugentwicklung, Sicherheitstechnik, Überwachungssystemen und Unterhaltungstechnologien. Zudem bieten sich Chancen in der Forschung und Entwicklung von Algorithmen zur Bildanalyse und in der Computer Vision-Industrie.
    Welche grundlegenden Kenntnisse sollte man für die Bilddateninterpretation im Informatik Studium mitbringen?
    Für die Bilddateninterpretation sollte man grundlegende Kenntnisse in Mathematik (insbesondere lineare Algebra und Statistik), Signalverarbeitung, grundlegender Informatik sowie Programmierkenntnisse haben. Zudem sind Kenntnisse in maschinellem Lernen und Bildverarbeitungsalgorithmen hilfreich.
    Welche Softwarewerkzeuge werden häufig in der Bilddateninterpretation im Informatik Studium verwendet?
    Häufig verwendete Softwarewerkzeuge in der Bilddateninterpretation im Informatik Studium sind MATLAB, OpenCV, TensorFlow und Keras. Diese Tools unterstützen bei der Bildverarbeitung, Mustererkennung und dem maschinellen Lernen, indem sie leistungsstarke Bibliotheken und Funktionen zur Analyse und Interpretation von Bilddaten bereitstellen.
    Welche aktuellen Herausforderungen gibt es in der Bilddateninterpretation im Rahmen eines Informatik Studiums?
    Aktuelle Herausforderungen in der Bilddateninterpretation im Informatik Studium umfassen die Bewältigung großer Datenmengen, die Verbesserung der Genauigkeit von Algorithmen, der Umgang mit unstrukturierten und verrauschten Daten sowie die Integration von maschinellem Lernen und KI-Techniken zur automatisierten Interpretation und Analyse von Bilddaten.
    Welche Karrieremöglichkeiten eröffnen sich durch die Bilddateninterpretation im Bereich der medizinischen Informatik?
    Karrieremöglichkeiten in der Bilddateninterpretation im medizinischen Bereich umfassen Positionen als Datenanalyst, Entwickler von Bildverarbeitungssystemen, Radiologie-IT-Spezialist und Forscher im Bereich medizinische Bildanalyse. Diese Fachkräfte arbeiten an der Optimierung diagnostischer Verfahren, der Entwicklung von KI-gestützten Analysewerkzeugen und der Verbesserung von bildgesteuerten Therapieansätzen.
    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welche Aufgabe hat die Bilderkennung in den sozialen Medien?

    Was ist die kleinste Einheit eines Bildes in der Bilddateninterpretation?

    Welches Verfahren wird häufig für die Bildklassifikation und Objekterkennung verwendet?

    Weiter
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Informatik Studium Lehrer

    • 12 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren