Systemsimulation

Mobile Features AB

Systemsimulation ist ein mächtiges Werkzeug zur Modellierung und Analyse komplexer Systeme, bei dem Computersoftware genutzt wird, um das Verhalten eines Systems über die Zeit nachzuahmen. Mit Systemsimulation kannst Du verschiedene Szenarien testen, ohne in der realen Welt experimentieren zu müssen, was sowohl Zeit als auch Ressourcen spart. Das Verständnis und die Anwendung von Systemsimulationen sind besonders in Bereichen wie Ingenieurwesen, Logistik, und Wirtschaft unerlässlich, da sie Einblicke bieten, die zur Optimierung von Prozessen und zur Vorhersage von Systemreaktionen genutzt werden können.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

StudySmarter Redaktionsteam

Team Systemsimulation Lehrer

  • 11 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 15.01.2025
  • 11 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 15.01.2025
  • 11 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Systemsimulation

    Systemsimulation ist eine wichtige Technik in den Ingenieurwissenschaften. Sie ermöglicht es, komplexe Systeme zu modellieren und ihr Verhalten unter verschiedenen Bedingungen zu simulieren. Diese Methoden kommen in vielen Bereichen zum Einsatz, darunter Maschinenbau, Elektrotechnik und Informatik.

    Definition

    Systemsimulation ist der Prozess, bei dem Modelle eines Systems erstellt werden, um das Systemverhalten Vorhersage über einen bestimmten Zeitraum zu ermöglichen. Hierbei kommen mathematische Modelle zum Einsatz, die die relevanten Merkmale und Beziehungen innerhalb des Systems berücksichtigen. Besonders in der Systemsimulation in Mechatronik und der Multi-Domain-Systemsimulation spielt die präzise elektrischer Antrieb Modellierung eine entscheidende Rolle, um komplexe Interaktionen und Dynamiken realistisch abzubilden.

    Du kannst dir eine Systemsimulation wie ein virtuelles Experiment vorstellen. Anstatt ein physisches System zu verändern oder zu testen, wird ein Modell des Systems erstellt, das dann simuliert wird. Diese Modelle können:

    • Möglich machen, kostspielige physische Prototypen zu vermeiden.
    • Zur Optimierung von Systemfunktionen beitragen.
    • Fehler und Schwachstellen frühzeitig identifizieren.

    Stell dir ein Automobilunternehmen vor, das das Verhalten eines neuen Motors testen möchte. Mittels Systemsimulation kann das Unternehmen verschiedene Aspekte, wie Temperatur und Druck der Komponenten, vorhersagen. Ein mathematisches Modell könnte so aussehen:

    wenn \[P = \frac{W}{T}\], wobei P für Leistung, W für Arbeit und T für Zeit steht. Änderungen in W oder T zeigen direkt Auswirkungen auf die Leistung des Motors.

    Die Entwicklung eines mathematischen Modells für Systemsimulation beginnt häufig mit der Identifizierung von Systemkomponenten und deren Interaktionen. Diese Komponenten werden dann in mathematische Gleichungen umgewandelt. In der Regel sind die folgenden Schritte beteiligt:

    • Identifikation der zu simulierenden Systemkomponenten.
    • Erstellung der entsprechenden mathematischen Modelle, häufig in Form von Differentialgleichungen.
    • Auswahl und Anpassung von Simulationssoftware oder -tools.
    • Durchführung der Simulation und Analyse der Ergebnisse.

    Ein tieferes Eintauchen in die mathematischen Modelle innerhalb der Systemsimulation zeigt, dass Differentialgleichungen häufig verwendet werden, um dynamisches Verhalten darzustellen. Eine typische Differentialgleichung könnte die Form haben:

    \[\frac{dx}{dt} = f(x, t)\]

    In dieser Gleichung beschreibt \(x\) den Zustand des Systems zu einem bestimmten Zeitpunkt \(t\), und die Funktion \(f(x, t)\) beschreibt die Änderung dieser Zustände über die Zeit. Solche Gleichungen sind zentral für die Simulation dynamischer Systeme und spielen eine entscheidende Rolle für die Genauigkeit und Zuverlässigkeit der Simulationsergebnisse.

    Systemsimulation einfach erklärt

    In den Ingenieurwissenschaften spielt die Systemsimulation eine entscheidende Rolle, um komplexe Systeme zu verstehen und zu optimieren. Die Technik ist so konzipiert, dass sie das Verhalten von Systemen in einem virtuellen Umfeld modelliert und analysiert.

    Systemsimulation bezeichnet die Nachbildung der Operationen eines realen Prozesses oder Systems über die Zeit. Dabei werden Modelle erstellt, die es ermöglichen, das Systemverhalten vorherzusagen und zu analysieren, wie es auf verschiedene Inputs reagiert. Diese Technik ist besonders wichtig in der Multi-Domain-Systemsimulation und findet Anwendung in der Systemsimulation in Mechatronik, sowie in der elektrischen Antrieb Modellierung, um komplexe Systeme effizient zu optimieren.

    Systemsimulationen setzen oft auf mathematische Modelle. Diese Modelle bestehen aus Gleichungen, die die realen Phänomene eines Systems beschreiben. Zum Beispiel:

    Nehmen wir die Bewegung eines Fahrzeuges; die Grundlagen können durch die Formel der Bewegung beschrieben werden:

    \[v = u + at\]

    wo v die Endgeschwindigkeit, u die Anfangsgeschwindigkeit, a die Beschleunigung und t die Zeit ist.

    Ein Unternehmen will die Kühlung eines Rechenzentrums optimieren. Mittels Systemsimulation kann analysiert werden, wie klimatische Veränderungen die Kühlung beeinflussen, bevor teure Infrastruktur verbaut wird. Eine Modellgleichung könnte lauten:

    \[E = Q(1 - e^{-kt})\]

    wo E die gespeicherte Energie, Q die Wärmemenge, e die Basis der natürlichen Logarithmen und k die Rate der Wärmeabfuhr beschreibt.

    Abseits der Grundlagen bieten Systemsimulationen die Chance, tief in das dynamische Verhalten von Systemen einzutauchen. Dynamische Simulationen helfen insbesondere in der Produktion oder Logistik, wo sich Prozesse ständig ändern. Ein interessanter Fokus liegt auf nichtlinearen Modellen, beispielsweise:

    Die Differenzialgleichung eines Wassertanks, der kontinuierlich mit Wasser gefüllt wird, könnte wie folgt aufgestellt werden:

    \[\frac{dh}{dt} = \frac{1}{A}(Q_{in} - Q_{out})\]

    Hier beschreibt \(h\) den Wasserstand, \(A\) die Querschnittsfläche des Tanks, \(Q_{in}\) den Zufluss und \(Q_{out}\) den Abfluss. Solche Modelle sind kritisch für die Optimierung der Wasserversorgung und zeigen die Komplexität hinter scheinbar einfachen Prozessen.

    Wusstest du, dass nahezu jede Branche, von der Autobranche bis zur Weltraumfahrt, auf Systemsimulationen setzt, um Innovationen voranzutreiben?

    Multi-Domain-Systemsimulation

    Die Multi-Domain-Systemsimulation bezieht sich auf die Simulation von Systemen, die aus verschiedenen Fachgebieten und physikalischen Domänen bestehen. Diese Art der Simulation ermöglicht es, komplexe Systeme, die aus mechanischen, elektrischen, thermischen und anderen Teilbereichen bestehen, ganzheitlich zu modellieren und zu analysieren.

    Eine große Stärke der Multi-Domain-Systemsimulation liegt in der Integration der unterschiedlichen Modelle in eine einzige Simulationsumgebung. So kannst Du:

    • Interaktionen zwischen verschiedenen Domänen untersuchen.
    • Systemoptimierungen über mehrere Bereiche hinweg durchführen.
    • Die Gesamtauswirkungen von Änderungen in einer Domäne auf das gesamte System analysieren.

    Multi-Domain-Systemsimulation ist ein innovativer Ansatz, der die gleichzeitige Modellierung und Simulation mehrerer physikalischer Domänen innerhalb eines einzigen Systems ermöglicht. Diese Methode ist besonders relevant in der Systemsimulation in Mechatronik, da sie ein umfassendes Verständnis des Systemverhaltens und der Interaktionen zwischen verschiedenen Komponenten fördert. Durch die Modellierung elektrischer Antriebe und anderer physikalischer Systeme können Ingenieure präzisere Vorhersagen über die Systemperformance treffen, was die Effizienz und Zuverlässigkeit von technischen Anwendungen verbessert.

    Betrachte ein Elektrofahrrad, das Mechanik, Elektrik und Software integriert. Die Multidomain-Simulation könnte die Interaktion zwischen:

    MechanikRahmen- und Radbewegung
    ElektrikBatterie und Motor
    SoftwareSensordatenverarbeitung

    eine Simulation der vollständigen Fahrdynamik liefern. Die mathematische Beschreibung könnte sein:

    \[F_{total} = F_{mechanisch} + F_{elektrisch} + F_{software} + C\]

    wo \(F_{total}\) die Gesamtwirkung von Einflüssen und \(C\) ein Konfigurationsparameter ist.

    In der Multi-Domain-Systemsimulation spielt die Kopplung unterschiedlicher physikalischer Modelle eine zentrale Rolle. Ein tiefergehender Ansatz verwendet sogenannte co-simulation Techniken, bei denen unterschiedliche Simulationswerkzeuge synchronisiert arbeiten.Dies ermöglicht die gleichzeitige Berechnung verschiedener Domänen. Zum Beispiel bei einem Flugsimulator:

    • Die Aerodynamik wird mit CFD-Software simuliert.
    • Die Avionik nutzt elektrische Schaltkreismodelle.
    • Die strukturelle Belastung wird durch FEM-Methoden berechnet.

    Eine solche kooperative Simulation erfordert robuste Datenkommunikation und regelmäßige Synchronisierung zwischen allen beteiligten Softwaretools, was nicht nur herausfordernd, sondern auch ressourcenintensiv sein kann. Die Herausforderung liegt in der Koordination der Zeitintervalle und der Modellintegration, um realistische und zuverlässige Ergebnisse zu erzielen.

    Der Einsatz von Mehrbereichssimulationen kann besonders vorteilhaft sein in Bereichen, wo interdisziplinäre Zusammenarbeit erforderlich ist, wie z.B. in der Entwicklung von Hybridfahrzeugen oder intelligenten Gebäudesystemen.

    Systemsimulation und Regelungstechnik

    In der Welt der Ingenieurwissenschaften ist die Systemsimulation ein unverzichtbares Werkzeug, besonders in der Regelungstechnik. Sie hilft, komplexe Systeme zu entwerfen, zu analysieren und zu optimieren. Durch das virtuelle Modellieren realer Prozesse kannst Du verschiedene Szenarien simulieren und potenzielle Probleme vorhersehen.

    Systemsimulation elektrische Antriebe

    Elektrische Antriebe sind ein Schlüsselelement in vielen technischen Systemen, von der Automobilindustrie bis zur Fabrikautomation. Die Systemsimulation ermöglicht es Ingenieuren, das Verhalten dieser Antriebe unter verschiedenen Bedingungen zu untersuchen, ohne physische Prototypen bauen zu müssen.

    Ein elektrischer Antrieb ist ein System, das elektrische Energie in mechanische Energie umwandelt. Diese Systeme sind entscheidend für die Steuerung der Bewegung in Maschinen und finden Anwendung in der Systemsimulation, insbesondere in der Multi-Domain-Systemsimulation. Durch die Modellierung elektrischer Antriebe können Ingenieure das Systemverhalten vorhersagen und optimieren, was in der Mechatronik von großer Bedeutung ist.

    Mittels Simulationen können Leistungsmerkmale wie Drehmoment, Effizienz und Betriebsverhalten analysiert werden. Die Verwendung mathematischer Modelle, wie:

    \[T = K \cdot I\]

    wo T das Drehmoment, K die Drehmomentkonstante und I der Strom ist, erleichtert die Vorhersage des Antriebsverhaltens.

    Ein Systemmodell könnte beispielsweise Rückkopplungsschleifen für verbesserte Stabilität beinhalten:

    \[V(t) = L \frac{di}{dt} + RI\]

    Dieses Gleichungssystem beschreibt die Spannung V(t) über Zeit, die Induktivität L und den Widerstand R eines elektrischen Kreises.

    Du willst die Effizienz eines Elektromotors bestimmen. Durch Systemsimulationen erhälst Du einen Überblick:

    AntriebstypEffizienzbereich
    Gleichstrommotor70-90%
    Wechselstrommotor75-95%

    Diese Analyse ermöglicht es, den optimalen Motor für eine spezifische Anwendung auszuwählen.

    Elektrische Antriebe finden nicht nur in der Industrie Anwendung, sondern auch in Alltagsgeräten wie Ventilatoren und Waschmaschinen.

    Mechatronik-Systemsimulation

    Mechatronik integriert Mechanik, Elektronik und Informatik zu integrierten Systemen. Die Systemsimulation spielt eine zentrale Rolle bei der Entwicklung solcher Systeme, da sie die nahtlose Interaktion dieser Disziplinen erfordert.

    In der Mechatronik bezeichnet Systemsimulation die umfassende Modellierung von Systemen, die mehrere technische Disziplinen gleichzeitig berücksichtigen. Diese Multi-Domain-Systemsimulation ermöglicht es, das Systemverhalten Vorhersage zu optimieren und verschiedene Aspekte wie die elektrische Antrieb Modellierung zu integrieren. Durch die Simulation können Ingenieure potenzielle Probleme frühzeitig identifizieren und Lösungen entwickeln, was die Effizienz und Zuverlässigkeit von mechatronischen Systemen verbessert.

    Ein durchdachtes Simulationstool kann:

    • Mechanische Bewegungen mit elektronischen Steuerungen synchronisieren.
    • Die Auswirkung von Softwareänderungen auf die Hardwareleistung prognostizieren.
    • Die Gesamtleistung eines Systems optimieren.

    Zum Beispiel bei der Simulation eines Roboters, der greifen und heben kann, spielt die Bewegungssteuerung eine entscheidende Rolle. Du kannst die mathematischen Modelle verwenden:

    \[F = m \cdot a\]

    wo F die Kraft, m die Masse und a die Beschleunigung beschreibt, um die benötigte Greifkraft zu analysieren.

    Systemsimulationen in der Mechatronik erstrecken sich häufig auf die Analyse und Optimierung von Schnittstellen zwischen physikalischen und digitalen Komponenten. Ein spezifisches Beispiel für solche Simulationen findet sich beim Entwurf von intelligenten Steuerungssystemen für Produktionslinien. Solche Systeme umfassen:

    • Zentrierung auf die Feedback-Schleife, um Echtzeitdaten aus der Produktion zu nutzen.
    • Implementierung von Algorithmen zur Fehlererkennung und -behebung.
    • Nutzung von Prediktiver Analyse zur Vorbeugung von Systemausfällen.

    Eine Simulation könnte die folgenden Komponenten analysieren:

    \[HR(t) = a \cdot QC(t) + b \cdot PR(t)\]

    In dieser Gleichung repräsentiert HR(t) die Produktionsrate, QC(t) die Qualitätskontrolle und PR(t) die Produktionsmittel. Diese Analyse zeigt, wie Simulationen helfen können, Produktivität zu steigern und gleichzeitig die Qualität aufrechtzuerhalten.

    Veraltete industrielle Systeme können durch den Einsatz von Mechatronik-Simulationen oft effektiver und kostengünstiger aufgerüstet werden.

    Systemsimulation - Das Wichtigste

    • Systemsimulation: Der Prozess der Erstellung von Modellen eines Systems, um dessen Verhalten vorherzusagen. Es nutzt mathematische Modelle, um relevante Merkmale zu simulieren.
    • Systemsimulation einfach erklärt: Nachbildung realer Prozesse oder Systeme im Zeitverlauf, um Systemverhalten vorauszusehen und zu analysieren.
    • Multi-Domain-Systemsimulation: Simulation von Systemen, die verschiedene physikalische Domänen umfassen, um Interaktionen und Gesamtperformance zu analysieren.
    • Systemsimulation und Regelungstechnik: Ein unverzichtbares Werkzeug in der Regelungstechnik zur Analyse und Optimierung komplexer Systeme.
    • Systemsimulation elektrische Antriebe: Untersuchung des Verhaltens elektrischer Antriebe unter verschiedenen Bedingungen zur Vorhersage von Leistungsmerkmalen.
    • Mechatronik-Systemsimulation: Modellierung integrierter Systeme, die Mechanik, Elektronik und Informatik kombinieren, um die Gesamtleistung zu optimieren.

    References

    1. John Nordberg, Martin Servin (2015). Meshfree elastoplastic solid for nonsmooth multidomain dynamics. Available at: http://arxiv.org/abs/1611.03741v1 (Accessed: 15 January 2025).
    2. C. B. Muratov (1996). Synchronization, chaos, and breakdown of collective domain oscillations in reaction-diffusion systems. Available at: http://arxiv.org/abs/patt-sol/9608005v1 (Accessed: 15 January 2025).
    3. N. S. Kiselev, I. E. Dragunov, V. Neu, U. K. Roessler, A. N. Bogdanov (2007). Theoretical analysis of magnetic force microscopy contrast in multidomain states of magnetic superlattices with perpendicular anisotropy. Available at: http://arxiv.org/abs/0708.1570v4 (Accessed: 15 January 2025).
    Häufig gestellte Fragen zum Thema Systemsimulation
    Welche Software wird häufig für die Systemsimulation in den Ingenieurwissenschaften verwendet?
    Häufig verwendete Software für die Systemsimulation in den Ingenieurwissenschaften sind MATLAB/Simulink, ANSYS, and COMSOL Multiphysics. Diese Programme bieten umfangreiche Funktionen zur Modellierung, Simulation und Analyse komplexer Systeme und Prozesse und werden in verschiedenen Bereichen wie Maschinenbau, Elektrotechnik und Fahrzeugtechnik eingesetzt.
    Welche Vorteile bietet die Systemsimulation gegenüber physischen Prototypen in der Entwicklung?
    Systemsimulationen ermöglichen kostengünstige und schnelle Design-Iterationen, reduzieren Entwicklungszeiten und vermeiden teure Fehler, die bei physischen Prototypen auftreten könnten. Zudem bieten sie die Möglichkeit, komplexe Szenarien unter verschiedenen Bedingungen zu testen, die in der realen Welt schwer oder gar nicht nachzustellen wären.
    Wie kann die Systemsimulation den Entwicklungsprozess verkürzen?
    Systemsimulation ermöglicht eine frühzeitige Erkennung und Behebung potenzieller Probleme, wodurch der Entwicklungsprozess beschleunigt wird. Sie reduziert den Bedarf an physischen Prototypen, spart Ressourcen und Zeit. Zudem erleichtert sie Iterationen und Anpassungen im Design. Dies führt zu schnelleren Markteinführungen und optimierten Produkten.
    Wie genau funktioniert die Systemsimulation im Bereich der Ingenieurwissenschaften?
    Die Systemsimulation in den Ingenieurwissenschaften modelliert reale Prozesse durch mathematische Modelle, die am Computer ausgeführt werden. Physikalische, chemische und technische Parameter werden berücksichtigt, um das Verhalten des Systems zu evaluieren und zu optimieren. Simulationen ermöglichen es, verschiedene Szenarien zu testen, bevor physische Prototypen geschaffen werden, was Zeit und Kosten spart.
    Welche Branchen profitieren besonders von der Anwendung der Systemsimulation?
    Branchen wie Automobilindustrie, Luft- und Raumfahrt, Energieerzeugung, Elektronik, Maschinenbau und Chemie profitieren besonders von der Systemsimulation. Sie ermöglicht die Optimierung von Prozessen, die Reduzierung von Entwicklungskosten und -zeiten sowie die Verbesserung der Produktqualität und -zuverlässigkeit.
    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Was charakterisiert die Multi-Domain-Systemsimulation?

    Was beschreibt der Begriff 'Systemsimulation'?

    Wie unterstützt die Multi-Domain-Systemsimulation die Systemoptimierung?

    Weiter
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Ingenieurwissenschaften Lehrer

    • 11 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren