Tiefpassfilter

Mobile Features AB

Ein Tiefpassfilter ist ein elektronisches Bauelement, das hohe Frequenzen abschwächt und niedrige Frequenzen ungehindert passieren lässt. Er wird häufig in Audio- und Signalverarbeitungsanwendungen eingesetzt, um Störgeräusche zu reduzieren und die gewünschte Signalkomponente zu isolieren. Um den Effekt eines Tiefpassfilters zu verstehen, kannst Du Dir vorstellen, dass er wie eine Tür wirkt, die nur langsame Wellen durchlässt.

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

StudySmarter Redaktionsteam

Team Tiefpassfilter Lehrer

  • 11 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 17.01.2025
  • 11 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 17.01.2025
  • 11 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Tiefpassfilter Definition

    Tiefpassfilter sind elektronische Schaltungen, die primär dazu verwendet werden, hochfrequente Störsignale zu blockieren und niederfrequente Signale durchzulassen. Sie sind essenziell in zahlreichen Anwendungen, von der Audiotechnik bis zur Signalverarbeitung.

    Eigenschaften von Tiefpassfiltern

    Ein wichtiger Aspekt von Tiefpassfiltern ist ihre Eckfrequenz \(f_c\). Diese bestimmt den Punkt, bei dem das Filter beginnt, höhere Frequenzen abzuschwächen. Das Verhalten eines Tiefpassfilters kann durch folgende Eigenschaften beschrieben werden:

    • Verstärkung: Misst die Fähigkeit des Filters, ein Signal bei niedrigen Frequenzen zu verstärken oder unberührt zu lassen.
    • Dämpfung: Das Maß, wie stark das Filter höhere Frequenzen reduziert.
    • Phasenverschiebung: Das Maß, wie sehr sich die Phase der ausgehenden Signalwelle im Vergleich zur eingehenden Signalwelle ändert.

    Ein Tiefpassfilter ist eine elektronische Schaltung, die Signale mit einer Frequenz unterhalb einer bestimmten Schwelle, der Eckfrequenz, ohne Verringerung durchlässt. Hochfrequente Signale werden dabei abgeschwächt, was die Tiefpassfilter Signalverarbeitung ermöglicht. Diese Filter sind entscheidend für die Tiefpassfilter Frequenzdämpfung in verschiedenen Anwendungen, wie z.B. in der Audiotechnik und der Kommunikationstechnik, um unerwünschte hochfrequente Störungen zu reduzieren.

    Mathematische Beschreibung

    Die mathematische Modellierung eines Tiefpassfilters kann mit Hilfe der Übertragungsfunktion erfolgen. Die Übertragungsfunktion \(H(s)\) eines idealen ersten Ordnungs-Tiefpassfilters ist gegeben durch:\[ H(s) = \frac{1}{1 + \frac{s}{\omega_c}} \]Hierbei ist \(s\) die komplexe Frequenz und \(\omega_c = 2 \pi f_c\) die Eckkreisfrequenz. Diese Funktion beschreibt das Frequenzverhalten des Filters und zeigt, wie die Ausgangsamplitude in Abhängigkeit von der Frequenz des Eingangssignals abnimmt.

    Ein einfaches praktisches Beispiel ist ein RC-Tiefpassfilter bestehend aus einem Widerstand \(R\) und einem Kondensator \(C\). Die Eckfrequenz \(f_c\) wird durch die Formel\[ f_c = \frac{1}{2 \pi R C} \]bestimmt. Wenn du einen Widerstand von 1 kOhm und einen Kondensator von 1 µF verwendest, ergibt sich eine Eckfrequenz von etwa 159 Hz.

    Anwendungen von Tiefpassfiltern

    Tiefpassfilter sind in vielen Anwendungen zu finden:

    • Audioverarbeitung: Hier kommen Tiefpassfilter zum Einsatz, um Störgeräusche und hochfrequente Rauschanteile aus Audiosignalen zu entfernen.
    • Bildverarbeitung: In der Bildverarbeitung helfen sie, feine Details zu glätten und Übergänge weicher zu gestalten.
    • Telekommunikation: Sie reduzieren Hochfrequenzstörungen und verbessern die Übertragungsqualität.
    • Stromversorgungen: Hier verhindern sie, dass unerwünschte Frequenzen in das Stromnetz eingekoppelt werden.

    Tiefpassfilter sind nicht nur auf elektronische Anwendungen beschränkt; auch mechanische Systeme, wie Schwingungsdämpfer, können als analoge Tiefpassfilter betrachtet werden.

    Tiefpassfilter Einfach Erklärt

    Ein Tiefpassfilter dient dazu, niederfrequente Signale durchzulassen und hochfrequente Signale abzuschwächen. Dies macht ihn zu einem wichtigen Bestandteil in der Signalverarbeitung und Elektronik. Lass uns nun tiefer in die Welt der Tiefpassfilter eintauchen und ihre Funktionsweise sowie Anwendungen verständlich erklären.

    Grundlagen der Tiefpassfilter

    Ein Tiefpassfilter basiert auf einer einfachen Schaltung, die aus passiven oder aktiven Komponenten besteht:

    • RC-Schaltungen: Eine Kombination aus Widerstand (R) und Kondensator (C) ist die einfachste Form eines analogen Tiefpassfilters.
    • LC-Schaltungen: Kombinationen aus Spulen (L) und Kondensatoren (C) werden oft für anspruchsvollere Filterungen verwendet.
    • Aktive Filter: Diese enthalten Verstärker, um das Signal zu verstärken und die Filterkurve zu verbessern.
    Die Arbeitsweise eines Tiefpassfilters kann durch die Eckfrequenz \(f_c\) veranschaulicht werden. Diese ist entscheidend für die Bestimmung, ab welcher Frequenz das Signal zu dämpfen beginnt.

    Ein Tiefpassfilter ist eine elektronische Schaltung, die Signale mit Frequenzen unterhalb einer festgelegten Eckfrequenz durchlässt, während Frequenzen darüber gedämpft werden. Diese Funktion ist entscheidend in der Signalverarbeitung, da sie unerwünschte hochfrequente Störungen reduziert und die Qualität des Ausgangssignals verbessert. Durch die gezielte Frequenzdämpfung ermöglicht der Tiefpassfilter eine präzisere Analyse und Verarbeitung von Signalen in verschiedenen Anwendungen, von Audio- bis zu Kommunikationssystemen.

    Betrachten wir ein Beispiel: Ein RC-Tiefpassfilter mit einem Widerstand \(R\) von 2 kOhm und einem Kondensator \(C\) von 500 nF ergibt eine Eckfrequenz \(f_c\) von:\[ f_c = \frac{1}{2 \pi R C} = \frac{1}{2 \pi \times 2000 \times 500 \times 10^{-9}} \approx 159.15 \text{ Hz} \]Dies bedeutet, dass Signale mit Frequenzen oberhalb von ca. 159 Hz gedämpft werden.

    Mathematisches Modell eines Tiefpassfilters

    Die Beschreibung eines Tiefpassfilters basiert stark auf seiner Übertragungsfunktion. Für ein einfaches RC-Tiefpassfilter lässt sich die Übertragungsfunktion wie folgt darstellen:\[ H(s) = \frac{1}{1 + sRC} \]Wobei:

    • \(s\) die komplexe Frequenz ist
    • \(R\) der Widerstand in Ohm
    • \(C\) die Kapazität in Farad
    Die Übertragungsfunktion hilft dabei, das Verhalten des Filters in Bezug auf die Frequenzen zu analysieren.

    Es ist interessant zu bemerken, dass Tiefpassfilter nicht nur in der Elektronik vorkommen. Auch akustische und mechanische Systeme verwenden Prinzipien von Tiefpassfilterung. Zum Beispiel kann ein Schwingungsdämpfer in einem Auto als mechanischer Tiefpassfilter betrachtet werden, der hochfrequente Vibrationen kompensiert und niedrige und angenehmere Frequenzen durchlässt, um den Fahrkomfort zu erhöhen.

    Die Qualität eines Tiefpassfilters wird oft als Güte bezeichnet, und eine hohe Güte bedeutet, dass der Filter steile Roll-Off-Kurven aufweisen kann.

    Tiefpassfilter Berechnen

    Das Berechnen eines Tiefpassfilters ist entscheidend, um seine Eigenschaften wie die Eckfrequenz und die Verstärkung zu bestimmen. Dies hilft, das Verhalten der Schaltung besser zu verstehen und sie für spezifische Anwendungen zu optimieren.

    Beispiele zur Berechnung eines Tiefpassfilters

    In einem RC-Tiefpassfilter können grundlegende Parameter wie die Eckfrequenz und die Verstärkung mit spezifischen Formeln berechnet werden. Im Folgenden sind einige anschauliche Beispiele zur Berechnung gegeben:Betrachte eine Schaltung mit einem Widerstand \(R\) von 1 kOhm und einem Kondensator \(C\) von 1 µF. Die Eckfrequenz \(f_c\) wird mit der folgenden Formel berechnet:\[ f_c = \frac{1}{2 \pi R C} \]Durch Einsetzen der Werte erhältst du:\[ f_c = \frac{1}{2 \pi \times 1000 \times 10^{-6}} \approx 159.15 \, \text{Hz} \]Dies bedeutet, dass Frequenzen über 159 Hz gedämpft werden.

    Angenommen, du möchtest die Verstärkung eines Signals bei einer Frequenz \(f\) von 100 Hz berechnen. Die Verstärkung ist durch die Formel:\[ A(f) = \frac{1}{\sqrt{1 + (\frac{f}{f_c})^2}} \]Setze \(f = 100 \text{ Hz}\) und \(f_c = 159.15 \text{ Hz}\) ein:\[ A(100) = \frac{1}{\sqrt{1 + (\frac{100}{159.15})^2}} \approx 0.894 \]Dies bedeutet, dass das Signal bei 100 Hz um etwa 10,6% reduziert wird.

    Für anspruchsvollere Berechnungen müssen oft SPICE-Simulationen verwendet werden, um nicht-lineare Effekte und parasitäre Elemente, die in realen Schaltkreisen auftreten, zu berücksichtigen. Eine solche Simulation ermöglicht es, sowohl die theoretischen als auch die tatsächlichen Antworten eines Filters im Detail zu untersuchen. Dies schließt ein, wie sich die Phasenverschiebung im Verhältnis zur Frequenz verändert und wie der Filter sich unter unterschiedlichen Lastbedingungen verhält.

    Die Güte eines Filters beeinflusst die Schärfe der Frequenztrennung. Eine hohe Güte kann zwar zu einer besseren Trennung führen, aber auch Resonanzeffekte hervorrufen, die in einigen Anwendungen unerwünscht sind.

    Tiefpassfilter Übung

    Die Anwendung von Tiefpassfiltern in Übungsaufgaben hilft dir, ein tieferes Verständnis über ihre Funktionalitäten und mathematischen Modelle zu erlangen. Sei bereit, verschiedene Parameter zu berechnen und reale Anwendungsszenarien zu durchdenken.

    Tiefpassfilter Beispielaufgabe

    Stellen wir uns eine Elektronikschaltung vor, die einen einfachen RC-Tiefpassfilter umfasst. Du hast die folgende Schaltung:

    • Widerstand (R) = 2 kOhm
    • Kondensator (C) = 0,5 µF
    Deine Aufgabe ist es, die Eckfrequenz \(f_c\) zu berechnen und herauszufinden, wie sich unterschiedliche Frequenzen auf die Verstärkung des Ausgangssignals auswirken.Die Formel für die Eckfrequenz ist:\[ f_c = \frac{1}{2 \pi R C} \]Setzen wir die gegebenen Werte ein:\[ f_c = \frac{1}{2 \pi \times 2000 \times 0,5 \times 10^{-6}} \approx 159,15 \text{ Hz} \]

    Angenommen, du prüfst ein Signal mit einer Frequenz von 200 Hz. Berechne die Verstärkung bei dieser Frequenz mit der Formel:\[ A(f) = \frac{1}{\sqrt{1 + (\frac{f}{f_c})^2}} \]Setze \(f = 200 \text{ Hz}\) und \(f_c = 159,15 \text{ Hz}\) ein:\[ A(200) = \frac{1}{\sqrt{1 + (\frac{200}{159,15})^2}} \approx 0,707 \]Dies zeigt, dass das Signal um etwa 29,3% reduziert wird.

    Bei der Betrachtung von realen Schaltungen ist es wichtig, parasitäre Kapazitäten und Induktivitäten zu berücksichtigen, die die tatsächliche Antwort eines Filters beeinflussen könnten. Solche Einflüsse werden manchmal durch SPICE-Simulationen analysiert, die eine genauere Darstellung des Signalspektrums bereitstellen. Dies ist besonders bei der Entwicklung von Hochfrequenzschaltungen relevant.

    Bei der Anpassung eines Tiefpassfilters kannst du die Werte von \(R\) und \(C\) variieren, um die gewünschte Eckfrequenz zu erreichen, ohne die Schaltung maßgeblich zu verändern.

    Tiefpassfilter Technologie

    Die Technologie der Tiefpassfilter ist essenziell für viele elektronische Anwendungen, da sie unerwünschte hohe Frequenzen filtern und eine klare Signalverarbeitung ermöglichen. Sie sind Bestandteil vieler elektronischer Geräte von Audiokomponenten bis hin zu Kommunikationssystemen.

    Funktionsweise eines Tiefpassfilters

    Ein typischer Tiefpassfilter arbeitet durch das Reduzieren der Amplitude von Frequenzen überhalb einer bestimmten Eckfrequenz \(f_c\). Dies wird erreicht durch Kombination von Bauteilen wie Widerständen, Kondensatoren und Spulen. Die einfachsten Formen sind RC- oder LC-Kombinationen.

    Ein Tiefpassfilter ist eine elektronische Schaltung, die Frequenzen unterhalb einer festgelegten Eckfrequenz passieren lässt, während höhere Frequenzen gedämpft werden. Diese Frequenzdämpfung wird durch die Kombination von Komponenten wie Widerständen, Kondensatoren und Spulen erreicht. Tiefpassfilter sind entscheidend in der Signalverarbeitung, da sie unerwünschte hochfrequente Störungen eliminieren und die Qualität des Ausgangssignals verbessern. Sie finden Anwendung in verschiedenen Bereichen, von Audio- bis zu Kommunikationssystemen, um die gewünschten Frequenzen zu isolieren und zu verstärken.

    Tiefpassfilter Aufbau

    Die Konstruktion eines Tiefpassfilters variiert je nach Anforderungen, jedoch sind die grundlegenden Schaltungstypen:

    • RC-Filter: Verwendung von Widerständen (R) und Kondensatoren (C).
    • LC-Filter: Nutzung von Spulen (L) in Kombination mit Kondensatoren.
    • Aktive Filter: Verstärker werden integriert, um die Signalstärke zu erhöhen und die Steilheit der Filterkurve zu kontrollieren.
    Jeder Filtertyp hat seine Vor- und Nachteile je nach Frequenzbereich und Anwendungsgebiet.

    Angenommen, du hast einen RC-Tiefpassfilter mit einem Widerstand von 1 kOhm und einem Kondensator von 1 µF. Dann ist die Eckfrequenz \(f_c\) berechnet durch:\[ f_c = \frac{1}{2 \pi R C} = \frac{1}{2 \pi \times 1000 \times 10^{-6}} \approx 159,15 \, \text{Hz} \]Dies bedeutet, dass Frequenzen oberhalb von 159 Hz gedämpft werden.

    In fortgeschrittenen Anwendungen können komplexe Filterstrukturen wie der Tschebyscheff-Filter oder Butterworth-Filter verwendet werden. Diese Filtertypen bieten spezifische Vorteile wie eine geringe Amplitudenschwankung im Durchlassbereich oder maximal flachen Frequenzverlauf im Durchlassbereich. Die Wahl des richtigen Filters kann entscheidend für die Signalqualität in professionellen Audio- und Kommunikationssystemen sein.

    Ein häufig übersehener Aspekt beim Bau von Tiefpassfiltern sind die parasitischen Elemente, die die Leistung des Filters bei höheren Frequenzen stark beeinflussen können.

    Tiefpassfilter - Das Wichtigste

    • Ein Tiefpassfilter ist eine elektronische Schaltung, die hochfrequente Signale abschwächt und niederfrequente Signale ohne Verringerung durchlässt.
    • Die Eckfrequenz ist ein wichtiger Begriff, der beschreibt, ab welcher Frequenz ein Tiefpassfilter höhere Frequenzen zu dämpfen beginnt.
    • Ein einfaches Beispiel für einen Tiefpassfilter ist ein RC-Schaltung, bei der die Eckfrequenz durch die Formel fc = 1/(2πRC) bestimmt wird.
    • Die Übertragungsfunktion eines idealen ersten Ordnungs-Tiefpassfilters lautet H(s) = 1/(1 + s/ωc), wobei s die komplexe Frequenz ist.
    • Tiefpassfilter Anwendungen umfassen Audiotechnik zur Reduzierung von Störgeräuschen und Bildverarbeitung zur Glättung von Details.
    • Es gibt Unterschiede zwischen RC-, LC- und aktiven Filtertypen, wobei jeder Typ je nach Anforderung spezifische Vorteile bietet.

    References

    1. Peter Domanski, Dirk Pflüger, Jochen Rivoir, Raphaël Latty (2022). Self-Learning Tuning for Post-Silicon Validation. Available at: http://arxiv.org/abs/2111.08995v3 (Accessed: 17 January 2025).
    2. Ingmar Steiner, Slim Ouni (2012). Progress in animation of an EMA-controlled tongue model for acoustic-visual speech synthesis. Available at: http://arxiv.org/abs/1201.4080v1 (Accessed: 17 January 2025).
    3. Denis Schwachhofer, Peter Domanski, Steffen Becker, Stefan Wagner, Matthias Sauer, Dirk Pflüger, Ilia Polian (2024). Large Language Models to Generate System-Level Test Programs Targeting Non-functional Properties. Available at: http://arxiv.org/abs/2403.10086v2 (Accessed: 17 January 2025).
    Häufig gestellte Fragen zum Thema Tiefpassfilter
    Wie funktioniert ein Tiefpassfilter?
    Ein Tiefpassfilter funktioniert, indem er Signale mit Frequenzen unterhalb einer bestimmten Grenzfrequenz durchlässt und höhere Frequenzen dämpft. Dies erreicht er durch elektronische Bauelemente wie Widerstände und Kondensatoren, die zusammen in einer bestimmten Schaltungskonfiguration agieren, um unerwünschte hochfrequente Komponenten zu eliminieren.
    Wofür werden Tiefpassfilter eingesetzt?
    Tiefpassfilter werden eingesetzt, um unerwünschte hohe Frequenzen in einem Signal zu unterdrücken und nur die niedrigen Frequenzen durchzulassen. Sie dienen dazu, Rauschen zu reduzieren, Signale zu glätten und in der Audiotechnik, Elektronik sowie Kommunikationstechnik die gewünschte Signalverarbeitung zu ermöglichen.
    Wie wird die Grenzfrequenz eines Tiefpassfilters berechnet?
    Die Grenzfrequenz eines Tiefpassfilters wird durch die Formel \\( f_c = \\frac{1}{2\\pi RC} \\) berechnet, wobei \\( R \\) der Widerstand und \\( C \\) die Kapazität im Filter sind.
    Wie wirken sich unterschiedliche Filterordnungen auf die Leistung eines Tiefpassfilters aus?
    Höhere Filterordnungen verbessern die Steilheit des Übergangsbereichs und bieten eine bessere Dämpfung unerwünschter höherfrequenter Signale, können jedoch die Komplexität und Kosten erhöhen. Gleichzeitig können sie die Gruppengeschwindigkeit und Stabilität negativ beeinflussen, was in bestimmten Anwendungen zu Verzerrungen führen kann.
    Wie kann ich einen Tiefpassfilter selber bauen?
    Um einen Tiefpassfilter selber zu bauen, benötigst Du einen Widerstand und einen Kondensator. Verbinde den Eingang mit dem Widerstand, danach schließt du den Kondensator parallel zum Ausgang an Masse an. Die Grenzfrequenz bestimmst Du mit der Formel: \\( f_c = \\frac{1}{2\\pi RC} \\). Experimentiere mit verschiedenen Werten, um die gewünschte Filterung zu erreichen.
    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Wie funktioniert ein typischer Tiefpassfilter?

    Welche Auswirkungen hat die Eckfrequenz auf ein Signal bei 100 Hz in einem RC-Tiefpassfilter?

    Wie berechnet man die Eckfrequenz eines RC-Tiefpassfilters?

    Weiter
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Ingenieurwissenschaften Lehrer

    • 11 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren