Modul MathKINN II: Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics II - Cheatsheet.pdf

Modul MathKINN II: Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics II - Cheatsheet
Modul MathKINN II: Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics II - Cheatsheet Backpropagation und Gradient Abstieg Definition: Backpropagation: Fehlerrückführung in mehrschichtigen Neuronalen Netzen zur Anpassung der Gewichte. Gradient Abstieg: Optimierungsverfahren zur Minimierung der Kostenfunktion. Details: Backpropagation berechnet Gradienten der Kos...

© StudySmarter 2024, all rights reserved.

Modul MathKINN II: Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics II - Cheatsheet

Backpropagation und Gradient Abstieg

Definition:

Backpropagation: Fehlerrückführung in mehrschichtigen Neuronalen Netzen zur Anpassung der Gewichte. Gradient Abstieg: Optimierungsverfahren zur Minimierung der Kostenfunktion.

Details:

  • Backpropagation berechnet Gradienten der Kostenfunktion relativ zu jedem Gewicht durch Kettenregel.
  • Gradient Abstieg aktualisiert Gewichte: \( w_{new} = w_{old} - \eta \frac{\partial J}{\partial w} \) wobei \( \eta \) die Lernrate und \( \frac{\partial J}{\partial w} \) der Gradient der Kostenfunktion \( J \) ist.
  • Zwei Phasen: Vorwärts- und Rückwärtsphase.
  • Vorwärtsphase: Berechnung der Ausgabe des Netzwerks.
  • Rückwärtsphase: Berechnung der Gradienten durch Rückpropagierung der Fehler.
  • Wiederholt sich iterativ, um die Gewichte zu optimieren.

Aktivierungsfunktionen (ReLU, Sigmoid, Tanh)

Definition:

Aktivierungsfunktionen sind mathematische Funktionen, die den Output eines Neurons in einem künstlichen neuronalen Netz bestimmen. Sie führen Nichtlinearitäten ein, um komplexe Muster zu modellieren.

Details:

  • ReLU (Rectified Linear Unit): Einfach, schnell konvergierend, erlaubt sparsames Aktivieren \( f(x) = \max(0, x) \)
  • Sigmoid: Glättet Output zwischen 0 und 1, für binäre Klassifikationen geeignet \( f(x) = \frac{1}{1 + e^{-x}} \)
  • Tanh (Hyperbolischer Tangens): Wertbereich von -1 bis 1, symmetrisch um die Null \( f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \)

Datenvorverarbeitung und Bereinigungstechniken

Definition:

Vorbereitung von Rohdaten in ein nutzbares Format mittels Techniken wie 'Data Cleaning', 'Integration', 'Transformation' und 'Reduction'.

Details:

  • Fehlende Werte: Entfernen, Imputieren, Ersetzen
  • Outlier-Entfernung: IQR-Methode, Z-Score-Methode
  • Datenskalierung: Normalisierung, Standardisierung
  • Feature Engineering: Erzeugung neuer Merkmale, Merkmalsselektion
  • Datentransformation: Diskretisierung, Binning

Deskriptive und inferenzielle Statistikmethoden

Definition:

Deskriptive Statistik beschreibt Daten durch Kennzahlen und Grafiken. Inferenzielle Statistik schließt von Stichproben auf die Grundgesamtheit.

Details:

  • Deskriptive Statistik:
    • Lagemaße: Mittelwert (\(\bar{x}\)), Median
    • Streuungsmaße: Varianz (\text{Var}(X)), Standardabweichung (\text{std}(X))
    • Grafiken: Histogramme, Boxplots
  • Inferenzielle Statistik:
    • Hypothesentests: t-Test, Chi-Quadrat-Test
    • Konfidenzintervalle
    • Regressionsanalyse

Heuristische Algorithmen in der KI

Definition:

Algorithmen, die auf Erfahrungswerten oder Näherungsverfahren basieren, um gute, aber nicht notwendigerweise optimale Lösungen für komplexe Probleme zu finden.

Details:

  • Wenden Regeln an, um Suchräume effizienter zu durchsuchen.
  • Nützliche Heuristiken: Greedy-Algorithmen, A* (A-Stern)-Algorithmus.
  • Reduzieren die Rechenzeit durch Annahmen und Vereinfachungen.
  • Typischer Einsatz in Problemfeldern wie Routenplanung, Spiel-KI, Optimierungsprobleme.
  • Risiko suboptimaler oder falscher Lösungen, Kontrolle notwendig.

Optimierungsmethoden für maschinelles Lernen

Definition:

Methoden zur Minimierung einer Kostenfunktion in ML-Modellen.

Details:

  • Gradientenabstieg: Aktualisiert Gewichte in Richtung des negativen Gradienten des Fehlers.
  • Stochastischer Gradientenabstieg (SGD): Aktualisiert Gewichte nach jeder Trainingsinstanz.
  • Mini-Batch SGD: Kombination aus Gradientenabstieg und SGD.
  • Adam: Adaptives Lernratenoptimierungsverfahren, kombiniert Momentum und RMSprop.
  • RMSprop: Ähnlich zu Adam, nutzt exponentiell gewichtete Mittelwertquadrate der Gradienten.
  • Momentum: Beschleunigt Gradientenabstieg, indem es in Richtung des vorherigen Gradienten fortsetzt.

Lineare Algebra: Matrizenoperationen

Definition:

Operationen, die auf Matrizen angewendet werden, um neue Matrizen oder Werte zu erhalten.

Details:

  • Addition und Subtraktion: Zwei Matrizen gleicher Dimension addieren/subtrahieren
  • Skalarmultiplikation: Multiplikation einer Matrix mit einem Skalar
  • Matrizenmultiplikation: Produkt zweier Matrizen formen, bedingt durch kompatible Dimensionen
  • Transponieren: Vertauschen von Zeilen und Spalten einer Matrix
  • Inverse: für quadratische Matrizen, sofern invertierbar
  • Determinante: Skalarwert für quadratische Matrizen zur Untersuchung von Eigenschaften wie Invertierbarkeit

Ethik und gesellschaftliche Auswirkungen der KI

Definition:

Ethik und gesellschaftliche Auswirkungen der KI: Untersuchung moralischer Fragen und sozialer Folgen bei der Nutzung von Künstlicher Intelligenz.

Details:

  • Verantwortlichkeit und Haftung: Wer ist verantwortlich für Entscheidungen von KI?
  • Bias und Fairness: KI-Modelle können bestehende Vorurteile verstärken.
  • Datenschutz: Umgang mit persönlichen Daten und deren Sicherheit.
  • Arbeitsmarkt: Veränderung des Jobmarktes durch Automatisierung.
  • Transparenz: Nachvollziehbarkeit von KI-Entscheidungen.
  • Regulierung: Notwendigkeit gesetzlicher Rahmenbedingungen.
Sign Up

Melde dich kostenlos an, um Zugriff auf das vollständige Dokument zu erhalten

Mit unserer kostenlosen Lernplattform erhältst du Zugang zu Millionen von Dokumenten, Karteikarten und Unterlagen.

Kostenloses Konto erstellen

Du hast bereits ein Konto? Anmelden