Proportionalität

Wenn zwei Größen proportional zueinander sind, dann führt die Veränderung der ersten Größe zu einer bestimmten Veränderung der zweiten Größe. Du musst so etwa mehr bezahlen, wenn du mehr Eier kaufen möchtest. Oder die Zeit zur Fertigstellung eines Hauses verringert sich, wenn mehr Arbeiter mitarbeiten. Die zwei Größen sind auf eine genau vorgegebene Art und Weise abhängig voneinander. Welche Arten von Abhängigkeiten es gibt, lernst du in diesem Artikel.  Es werden die direkte und die indirekte Proportionalität unterschieden, die nun genauer beschrieben werden.

Los geht’s

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Proportionalität Lehrer

  • 11 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Direkte Proportionalität: Erklärung

    Möchte man im Supermarkt Äpfel kaufen, so kostet ein Kilogramm lose Äpfel 2 €. Kauft man doppelt so viele Äpfel, also 2 kg, so verdoppelt sich auch der Preis, der bezahlt werden muss. Man muss dann 4 € zahlen. Wie sich der Preis für 3 kg, 4 kg und 5 kg entwickelt, kannst du in der Tabelle nachvollziehen.

    Masse Äpfel in kg12345
    Preis Äpfel in €246810

    Wie viel du zahlen musst, wenn du weniger als einen Kilogramm Äpfel kaufen möchtest, erfährst du in diesem Beispiel.

    Aufgabe 1

    Ein kleinerer Apfel wiegt ungefähr 100 g. Du weißt bereits, dass ein Kilogramm Äpfel, also 1000 g Äpfel. 2 € kosten. Wie viel muss dann bezahlt werden, wenn nur 5 von diesen Äpfeln (500 g Äpfel), also ein halbes Kilogramm, gekauft werden? Wie verändert sich der Preis, wenn man nur zwei Äpfel (200 g) oder einen Apfel (100 g) kaufen möchte?

    Lösung

    Masse Äpfel in g10020050010002000
    Preis Äpfel in €0,200,40124

    Wie du siehst, halbiert sich der Preis, wenn statt 1000 g Äpfel nur halb so viele, also 500 g Äpfel, gekauft werden. Analog muss man den Preis für die Äpfel durch 5 oder 10 teilen, wenn 200 g oder 100 g Äpfel anstelle von 1000 g Äpfeln gekauft werden.

    Daraus können wir schon mal eine wichtige Erkenntnis folgern!

    Zwei Größen sind direkt proportional, wenn gilt:

    Dem n-fachen der einen Größe entspricht das n-fache der anderen Größe.

    Bei zueinander direkt proportionalen Größen:

    • führt das Verdoppeln, Verdreifachen, … der einen Größe zum Verdoppeln, Verdreifachen der anderen Größe und
    • das Halbieren, Dritteln, … der einen Größe führt zum Halbieren, Dritteln, … der anderen Größe.

    Quotientengleichheit direkt proportionaler Größen

    Betrachtet man in der Tabelle zusätzlich die Quotienten von Masse und Preis, das heißt, teilt man die jeweilige Masse durch den Preis, passiert etwas Erstaunliches.

    Masse Äpfel in g12345
    Preis Äpfel in €246810
    22

    Dass dieser Quotient in jeder Spalte den gleichen Wert annimmt, ist kein Zufall. Das ist bei allen direkt proportionalen Zusammenhängen so. Man sagt auch, die beiden Größen sind quotientengleich.

    Zwei Größen sind quotientengleich, wenn der Quotient ihrer Wertepaare immer den gleichen Wert ergibt.

    Dieser konstante Wert wird auch mit dem Zeichen "k" dargestellt und als Proportionalitätsfaktor oder Proportionalitätskonstante bezeichnet. In diesem Beispiel sagt der Proportionalitätsfaktor aus, dass pro Kilogramm Äpfel 2 € bezahlt werden müssen.

    Zwei Größen sind direkt proportional, wenn die Wertepaare quotientengleich sind.

    Der konstante Wert des Quotienten wird auch als Proportionalitätskonstante oder Proportionalitätsfaktor k bezeichnet.

    Typische Beispiele für direkt proportionale Zusammenhänge

    • Preis Benzin in Abhängigkeit der getankten Liter Benzin
    • Masse und Volumen (der Proportionalitätsfaktor ist die Dichte)
    • Preis in Abhängigkeit der Anzahl der Ware
    • Gehalt in Abhängigkeit der Stunden, die gearbeitet wurden
    • Der Weg ist proportional zu der gefahrenen Zeit, wenn die Geschwindigkeit konstant bleibt.

    Wenn du dir zwei Größen anschaust und nicht sicher bist, ob sie direkt proportional sind, kannst du das einfach überprüfen. Du kannst nachweisen, dass es sich um einen direkt proportionalen Zusammenhang handelt, indem du zeigst, dass die zwei Größen quotientengleich sind, dass es einen konstanten Proportionalitätsfaktor gibt oder dass das n-fache der einen Größe dem n-fachen der anderen Größe entspricht.

    Wenn du mehr über direkt proportionale Größen und direkt proportionale Zusammenhänge erfahren möchtest, dann schaue in den Artikel Direkte Proportionalität vorbei.

    Indirekte Proportionalität: Erklärung

    Stelle dir vor, in einem Freibad soll das Schwimmerbecken vor der Eröffnung im Sommer befüllt werden. Wenn zwei Pumpen verwendet werden, dauert das Befüllen 30 Stunden. Wird hingegen nur eine Pumpe verwendet, verlängert sich die Zeit, die benötigt wird, um das Becken zu befüllen. Es dauert dann doppelt so lange – 60 Stunden. Aber werden stattdessen 4 Pumpen verwendet, dauert das Befüllen nur halb so lange, wie mit 2 Pumpen. Dieser Zusammenhang wird in der Tabelle dargestellt.

    Anzahl der Pumpen12345
    Dauer des Befüllens in h6030201512

    Damit können wir erneut eine wichtige Erkenntnis folgern!

    Zwei Größen sind indirekt proportional, wenn gilt:

    Dem n-fachen der einen Größe entspricht der n-te Teil der anderen Größe.

    Bei zueinander indirekt proportionalen Größen wird bei Verdoppeln, Verdreifachen, … der einen Größe die andere Größe halbiert, gedrittelt, …

    Das heißt, die eine Größe steigt um denselben Faktor, durch den die andere geteilt wird.

    Manchmal werden zueinander indirekt proportionale Größen auch als antiproportional oder umgekehrt proportional bezeichnet.

    Produktgleichheit bei indirekter Proportionalität

    Schauen wir uns zunächst an, was passiert, wenn der Wert der einen Größe mit dem zugehörigen Wert der anderen Größe multipliziert wird.

    Anzahl der Pumpen12345
    Dauer des Befüllens in h6030201512

    Das Produkt der Größen hat immer den gleichen Wert.

    Zwei Größen sind produktgleich, wenn das Produkt ihrer Wertepaare immer den gleichen Wert ergibt.

    Dass das Produkt der beiden Werte gleich ist, ist bei allen zueinander indirekt proportionalen Größen der Fall.

    Zwei Größen sind indirekt proportional, wenn die Wertepaare produktgleich sind.

    Oft hat das Produkt der beiden Größen eine Bedeutung im Sachzusammenhang. Zum Beispiel kann die Dauer, die für einen bestimmten Weg benötigt wird, in Abhängigkeit von der Geschwindigkeit betrachtet werden. Das Produkt aus Dauer und Geschwindigkeit bleibt immer gleich und beschreibt die Länge des Weges (Geschwindigkeit·Zeit=Weg).

    Stelle dir bei umgekehrt proportionalen Größen die Frage: "Was bleibt gleich?". So kannst du bei manchen Aufgaben den Sachverhalt besser verstehen.

    Typische Beispiele für indirekt proportionale Zusammenhänge

    • Anzahl Arbeiter und die benötigte Arbeitszeit (Produkt: Gesamtarbeitszeit für das Projekt)
    • Aufteilen von Süßigkeiten/Geld auf Personen (Produkt: Anzahl der Süßigkeiten/Geldbetrag)
    • Geschwindigkeit und Dauer einer Fahrt (Produkt: zurückgelegter Weg)
    • Anzahl Wasserpumpen und Befülldauer Schwimmbecken
    • Tage, für die ein Futtervorrat reicht, und Anzahl der Tiere (Produkt: insgesamt vorhandenen Futterportionen)

    Du solltest beachten, dass es sich meist um idealisierte Zusammenhänge handelt. Beispielsweise arbeitet nicht jeder Arbeiter gleich effektiv und nicht jedes Tier isst gleich viel. Aber um den realen Zusammenhang modellieren zu können, bietet es sich trotzdem an, von einem indirekt proportionalen Zusammenhang auszugehen.

    Wenn du mehr über indirekt proportionale Größen und indirekt proportionale Zusammenhänge erfahren möchtest, dann schaue in den Artikel Indirekte Proportionalität / Antiproprotionalität und Antiproportionalitätsfaktor.

    Proportionale Zuordnung und Proportionalitätsfaktor

    Damit du verstehen kannst, was eine proportionale Zuordnung ist, musst du zunächst wissen, was eine Zuordnung ist. Bei einer Zuordnung wird einer Größe eine andere Größe zugeordnet. So wird beispielsweise einem Apfel der Preis 20 ct zugeordnet und 2 Äpfeln wird der Preis 40 ct zugeordnet und so weiter.

    Eine Zuordnung zwischen zwei Größenbereichen ordnet einer unabhängigen Größe eine abhängige Größe zu. Ist diese Zuordnung eindeutig, so nennt man sie auch Funktion.

    Direkt proportionale Zuordnungen als Spezialfall linearer Funktionen

    Wenn der Preis von Äpfeln und die Masse der Äpfel in ein Koordinatensystem eingetragen werden, dann ergibt sich der typische lineare Verlauf einer direkt proportionalen Zuordnung. Die Masse der Äpfel entspricht den x-Werten und die zugeordneten Preise entsprechen den y-Werten.

    Proportionalität direkt proportionale Zuordnung StudySmarter

    Abbildung 1: Abhängigkeit des Preises von der gekauften Masse Äpfel im Koordinatensystem

    Bei direkt proportionalen Zuordnungen entsteht durch das Einzeichnen der Punkte und Verbinden zu einer Geraden stets eine Ursprungsgerade bzw. Ursprungshalbgerade. Das ist eine Gerade beziehungsweise Halbgerade, die durch den Punkt (0; 0) verläuft.

    Die Zuordnungsvorschrift bzw. der Funktionsterm lautet: ⁣y=k·x, wobei k die Proportionalitätskonstante ist. Die Proportionalitätskonstante entspricht also der Steigung der Ursprungsgerade.

    Im Koordinatensystem ergibt sich bei zwei zueinander direkt proportionalen Größen eine Ursprungsgerade.

    Zwei Größen, die proportional zueinander sind, können durch eine lineare Funktion der Formy=k·xdargestellt werden. Dies ist ein Spezialfall der allgemeinen linearen Funktiony=m·x+t, bei der der y-Achsenabschnitt 0 istt=0und die Steigung der Proportionalitätskonstantem=kentspricht.

    Du solltest allerdings darauf achten, dass nicht immer jeder Wert der Gerade einen Sinn ergibt. Der Zusammenhang von Preis und Anzahl von Eiern ist direkt proportional. Angenommen der Preis eines Eis liegt bei 20 ct, dann kosten zwei Eier 40 ct. Es ergibt aber keinen Sinn den Preis eines halben Eis oder von 1,5 Eiern zu betrachten.

    Indirekt proportionale Zuordnungen als Spezialfall gebrochen-rationaler Funktionen

    Werden die Werte umgekehrt proportionaler Größen in ein Koordinatensystem übertragen, so liegen alle Punkte auf einer Hyperbel, genauer auf einem Hyperbelast.

    Proportionalität indirekte proportionale Zuordnung StudySmarter

    Abbildung 2: Abhängigkeit der Befülldauer von der Anzahl der verwendeten Pumpen

    Im Koordinatensystem ergibt sich bei zwei zueinander indirekt proportionalen Größen eine Hyperbel.

    Zwei Größen, die indirekt proportional zueinander sind, können durch eine Hyperbel der Form y=kx dargestellt werden. Dies ist ein Spezialfall der gebrochen-rationalen Funktion g(x)=p(x)q(x), bei der das Zählerpolynom p(x) = k ein Polynom nullten Grades ist und das Nennerpolynom q(x) = x ersten Grades.

    Wenn du mehr über proportionale Zuordnungen und den Proportionalitätsfaktor erfahren möchtest, dann schaue in den Artikel Proportionale Zuordnungen und Proportionalitätsfaktor.

    Proportionalität: Der Dreisatz

    Sind zwei Größen zueinander direkt oder indirekt proportional und ein fehlender Wert soll berechnet werden, so kannst du den Dreisatz verwenden.

    1. In der ersten Zeile schreibst du das Verhältnis auf, das du kennst.
    2. In der zweiten Zeile rechnest du aus, was einer Anzahl/Einheit entspricht.
    3. In der dritten Zeile rechnest du dann die gesuchte Größe aus.

    Dreisatz bei direkt proportionalen Größen

    Um eine Aufgabe mit direkt proportionalen Größen zu lösen, musst du stets darauf achten, beim

    ver-n-fachen der einen Größe auch die andere Größe zu ver-n-fachen. Wie der Dreisatz bei direkt proportionalen Größen angewandt werden kann, wird dir anhand von folgendem Beispiel erläutert.

    Aufgabe 2

    In einem Rezept für Kekse wird für 3 Personen 600 g Mehl benötigt. Möchte man nun Kekse für 8 Personen backen, wie viel Mehl benötigt man dann?

    Lösung

    3 Personen 600 g 1 Person 200 g8 Personen 1600 g

    Um Kekse für 8 Personen zu backen, werden 600 g Mehl benötigt.

    Dreisatz bei indirekt proportionalen Größen

    Auch bei zueinander indirekt proportionalen Größen kann der Dreisatz verwendet werden, um einen fehlenden Wert zu berechnen. Du musst jetzt aber darauf achten, dass du nicht dasselbe auf beiden Seiten machst, sondern auf der einen Seiten teilst, wenn du auf der anderen multiplizierst.

    Im Beispiel wird dir gezeigt, wie es funktioniert.

    Aufgabe 3

    4 Arbeiter benötigen zur Fertigstellung eines Gerüsts 20 Stunden. Wie lange brauchen 6 Arbeiter?

    Lösung

    4 Arbeiter 24 h2 Arbeiter 48 h6 Arbeiter 16 h

    6 Arbeiter benötigen 16 h, um das Gerüst fertig zu stellen.

    Wenn du genauer wissen möchtest, wie und warum der Dreisatz funktioniert, dann wirf einen Blick in den Artikel Dreisatz.

    Proportionalität - Das Wichtigste

    • Bei proportionalen Größen führt die Veränderung der einen Größe zu einer bestimmten Veränderung der anderen Größe.
    • Es werden die direkte und die indirekte Proportionalität unterschieden.
    • Direkte Proportionalität:
      • Dem Doppelten, Dreifachen, … der einen Größe wird das Doppelte, Dreifache, … der anderen Größe zugeordnet.
      • Quotientengleichheit
      • Ursprungsgerade
    • Indirekte Proportionalität:
      • Dem Doppelten, Dreifachen, ... der einen Größe wird die Hälfte, das Drittel, ... der anderen Größe zugeordnet.
      • Produktgleichheit
      • Hyperbel
    Häufig gestellte Fragen zum Thema Proportionalität

    Was ist direkt proportional?

    Zwei Größen sind direkt proportional zueinander, wenn dem n-fachen der einen Größe das n-fache der anderen Größe zugeordnet wird. Das heißt beim Verdoppeln der einen Größe verdoppelt sich auch die andere. Zwischen den beiden Gößen herrscht dann ein linearer Zusammenhang.

    Woran kann ich erkennen, ob etwas proportional ist?

    Du erkennst, ob zwei Größen proportional sind, indem du überprüfst, ob sie quotientengleich sind, ein Proportionalitäsfaktor existiert oder ob das Doppelte, Dreifache, ... der einen Größe dem Doppelten, Dreifachen, ... der anderen Größe entspricht.

    Was ist der Unterschied zwischen direkt und indirekt proportional?

    Bei direkt proportionalen Größen entspricht dem Doppelten, Dreifachen, ... der einen Größe das Doppelte, Dreifache, ... der anderen Größe. Bei indirekt proportionalen Größen hingegen ist es umgekehrt: Dem Doppelten, Dreifachen, ... der einen Größe wird die Hälfte, das Drittel, ... der anderen Größe zugeordnet.

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welche Aussage gilt für indirekt proportionale Größen?

    Eigenschaften direkt proportionaler Größen:

    Eigenschaften indirekt proportionaler Größen:

    Weiter

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 11 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren