Volumeneinheiten

Mobile Features AB

Die Menge an Wasser, die in einem Meer enthalten ist, versus die Menge an Wasser, die in einem Teich enthalten ist, unterscheidet sich drastisch.

Los geht’s

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Volumeneinheiten Lehrer

  • 14 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 26.05.2023
  • 14 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 26.05.2023
  • 14 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • Content überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Springe zu einem wichtigen Kapitel

    Ein Meer besitzt viel mehr Wasser als ein Teich.

    Volumeneinheiten Wasser im Meer StudySmarter

    Um diese Differenz deutlicher darstellen zu können, werden Volumeneinheiten genutzt.

    Wofür wird welche Volumeneinheit genutzt? Und wie kannst Du die Volumeneinheiten untereinander umrechnen?

    In diesem Artikel wird Dir erklärt, was Volumeneinheiten sind und wie Du die unterschiedlichen Volumeneinheiten untereinander umformen kannst

    Volumeneinheiten – Grundlagenwissen

    Die Menge an Wasser, die in einem Meer enthalten ist, ist größer als die Menge an Wasser, die in einem Teich enthalten ist.

    Wie kann dieser Aussage eine Bedeutung zugeschrieben werden?

    Um den Rauminhalt von verschiedenen Objekten eine Bedeutung zuzuschreiben, benötigen wir Einheiten.

    Einheiten treten immer auf, wenn verschiedene Größen (Länge, Fläche, Volumen, Gewicht, Zeit etc.) gemessen werden. Die Einheit gibt an, was gemessen wurde (Meter, Quadratzentimeter, Kubikmeter, Kilogramm, Sekunden etc.).

    Mithilfe von Einheiten kann objektiv also gesagt werden: „Das Meer besitzt mehr Wasser als ein Regentropfen“.

    Wird eine Zahl mit einer Einheit kombiniert, kann damit ausgedrückt werden, wie viel von dieser Einheit gemessen wurde. Hast Du etwa die Angabe \(\textbf{7} \ \textbf{l}\), dann weißt Du, dass das Volumen des Objektes, das gemessen wurde, genau sieben Liter beträgt. Das l steht dabei für die Einheit Liter.

    Um größere und kleinere Rauminhalte voneinander zu trennen, gibt es die sogenannten Volumeneinheiten.

    Diese dreidimensionalen Rauminhalte werden mittels eines metrischen Maßsystems getrennt.

    Dieser Artikel befasst sich mit den Volumeneinheiten. Wenn Du etwas zu den Flächen-, Längeneinheiten oder Gewichtseinheiten erfahren willst, schaue gerne in den entsprechenden Artikeln vorbei.

    Alle Volumeneinheiten – Übersicht

    Ein wichtiger Begriff, der oftmals verwendet wird, wenn über Volumeneinheiten gesprochen wird, der auch schon im Namen 'Volumeneinheit' steckt, ist das Volumen.

    Volumen – Definition

    Der Begriff Volumen kommt neben der Mathematik auch in den Bereichen Chemie und Physik vor. Im Bereich Geometrie geht es oft darum, den Inhalt eines geometrischen Körpers zu berechnen, z.B. bei einem Würfel, einer Kugel, einem Prisma, einem Zylinder oder einem Quader.

    Das Volumen ist eine Größe, mit der ein Rauminhalt beschrieben und berechnet wird. Synonyme für das Volumen sind Rauminhalt und Kubikinhalt.

    Damit Du Dir darunter etwas mehr vorstellen kannst, folgt hier ein Beispiel für Dich.

    Du möchtest ein Aquarium aufstellen und willst wissen, wie viel Wasser in das leere Aquarium passt. Hierzu ist es praktisch, wenn Du das Volumen des Aquariums ausrechnen kannst, sodass Du die exakte Menge an Wasser in Dein Aquarium füllen kannst, ohne dass es überläuft oder noch zur Hälfte leer steht.

    Die verschiedenen Volumeneinheiten

    Verschieden große Dinge, von dem Volumen eines Atoms über dem Volumen der Erde, haben einen bestimmten dreidimensionalen Raum. Um die Zahlen vor den Einheiten möglichst klein und damit übersichtlich zu halten, gibt es verschiedene Einheiten, für verschiedene Dinge, mit verschiedenen Volumina. Denn was kannst Du Dir schon unter 13 Millionen Milliliter oder 0,0048 Liter vorstellen?

    Es ist interessant zu sehen, was es alles für Volumeneinheiten gibt. Die folgenden Einheiten, die alle Bezug auf den Kubikmaß nehmen, sind Teil des Internationalen Einheitensystems und werden dementsprechend auch SI-Einheiten genannt.

    Das Volumen eines Körpers kann auf zwei verschiedenen Methoden beschrieben werden:

    • Kubikmaß

    • Litermaß

    Volumeneinheiten Kubikmaß – Tabelle

    Das Volumen von Hohlräumen, Flüssigkeiten oder Feststoffen wird meistens in Kubikmaßen angegeben.

    Kubikmaße gehören zum metrischen System (SI-Einheit) und beschreibt einen dreidimensionalen Raum.

    Kubikmaße lernst Du erstmals in der Mathematik kennen, während Du das Volumen von mathematischen Körpern bestimmst.

    Der Begriff Kubik gibt etwas im dritten Grad an. Es wird z. B. ein dreidimensionaler Raum beschrieben.

    In der Tabelle findest Du die gängigsten Kubikmaße:

    Kubikmaße

    Schreibweise

    Kubikmillimeter

    \(\text{\(mm^3\)}\)

    Kubikzentimeter

    \(\text{cm}^3\)

    Kubikdezimeter

    \(\mathrm{dm}^3\)

    Kubikmeter

    \(\mathrm{m}^3\)

    Kubikkilometer

    \(\text{km}^3\)

    Volumeneinheiten Liter für Flüssigkeiten

    Volumeneinheiten werden im Falle von Flüssigkeiten für gewöhnlich in Litermaßen angegeben.

    Der Liter ist eine Maßeinheit für einen Rauminhalt. Das Litermaß wird zur Bestimmung des Volumens von Flüssigkeiten genutzt.

    Angegeben werden Volumeneinheiten im Falle von Flüssigkeiten für gewöhnlich in Liter oder Milliliter.

    In der Tabelle findest Du die gängigsten Litermaße:


    Litermaße

    Schreibweise

    Mikroliter

    µl

    Milliliter

    ml

    Liter

    l

    Hektoliter

    hl

    Wenn Du genauer in die Tabelle schaust, dann siehst Du, dass viele Gewichtseinheiten das Wort 'Liter' im Begriff enthalten.

    Fun Fact!

    Seit 1793 gilt der Liter als eine republikanische Maßeinheit in Frankreich und wurde dem Kubikdezimeter gleichgesetzt, d.h. \(\text{l}\) sind \(\text{\(1 \cdot dm^3\)}\).

    In Deutschland setzte sich der Liter erst 1872 durch.

    Andere Volumeneinheiten

    Die in den beiden Tabellen aufgelisteten Volumeneinheiten sind die meist genutzten, es gibt jedoch trotzdem auch noch weitere Volumeneinheiten.

    Die Maßsysteme variieren auf der Welt. In Europa wird das metrische System (SI-Einheiten) genutzt. In den USA wird jedoch das angloamerikanische Einheitssystem verwendet.

    Während Flüssigkeiten in Deutschland in Liter und Milliliter angegeben werden, werden in den USA die Flüssigkeiten mit Gallonen angegeben.

    Hier ein paar Einheiten, die interessant sein könnten:Gallone:Die Gallone ist eine raumüberführende Maßeinheit, die im angloamerikanischen und britischen Einheitssystem verwendet wird. Eine Gallone entspricht nach dem angloamerikanischen Maßsystem ca. \(\textstyle 3, 78\) Liter und nach dem britischen Einheitssystem ca. \(\displaystyle 4,55\) Liter.Pinte:Die Pinte ist eine raumüberführende Maßeinheit, die im angloamerikanischen und britischen Einheitssystem verwendet wird.Ein Pinte in den USA entspricht dabei etwa \(\mathrm{0 \ , 4732}\) Litern, ein Pint in Großbritannien etwa \(\text{0, 5683}\) Litern.Quart:Die Quart ist eine raumüberführende Maßeinheit, die im verwendet wurde, um das Volumen von Flüssigkeiten wie Wein und Bieren zu bestimmen und für die Bestimmung von Trockenvolumina von beispielsweise Getreide.Ein Quart (flüssig) beträgt ca. \(\textrm{0,95}\) Liter und eine Quart (fest) beträgt ca. \(\text{\(1, 1\)}\) Liter.

    Kubikmaße vs. Litermaße

    Kubikmaße und Litermaße beschreiben beide das Volumen eines Rauminhaltes, Du kannst also Litermaße in Kubikmaße umformen und andersherum. In der unteren Tabelle siehst Du, welchem Kubikmaß welches Litermaß zugeordnet werden kann.

    Kubikmaße

    Litermaße

    \(\displaystyle 1\, \mathrm{mm}^3\)\(1\,\mu l\)
    \(\text{1}\,\mathrm{cm}^3\)\(\mathrm{1\,ml}\)
    \( 1\, dm^{3} \)\(\text{l}=1\)
    \(\textnormal{m}^3\)\(\displaystyle 1\,hl\)

    Wenn Du so in die Tabelle siehst, dann erkennst Du vielleicht, dass Kubikmaße und Litermaße alle einen gegenseitigen „Partner“ haben, jedes Kubikmaß entspricht einem Litermaß, welches das gleiche Volumen beschreibt.

    Wenn Du \(\textit{l}\) Wasser in Deiner Flasche hast, dann hat die Flasche ein Volumen von \(\mathrm{1\,dm^{3}}\).

    Das Litermaß beschreibt dabei das flüssige Volumen, welches in die Flasche passt. Das Kubikmaß beschreibt dagegen das Hohlvolumen der Flasche.

    Wusstest Du das eine Ameise ein Volumen von ca. \(2\:\mathrm{mm}^3\) besitzt, während die Erde ein Volumen von \(1, \, 0832 \, \cdot 10^{21} \, m^3\) hat?

    Um dem Volumen der Erde zu gleichen, wären also \(\textstyle 541, 6\) Quadrilliarde Ameisen nötig.

    Die Vertreter der verschiedenen Volumeneinheiten

    Jetzt weißt Du, welche Volumeneinheit größer ist als die andere, jedoch weißt Du immer noch nicht, wie groß die Einheiten auf Objekte aus Deiner Umgebung bezogen sind.

    Um ein besseres Verständnis zu bekommen, wie groß so eine Volumeneinheit sein kann, hier ein paar Beispiele.

    Kubikmaße

    Litermaße

    Alltagsbeispiel

    \(\textstyle 1\,\text{mm}^3\)\({1\,\mathrm{\mu l}}\)

    Das Volumen von einem Salzkorn.

    Volumeneinheiten Salzstreuer als Altagsbeispiel für Mikroliter/ Kubikmillimeter StudySmarter

    \(\textrm{1\(\cdot\)cm}^3\)\(\text{1 }\text{ml}\)

    Das Volumen von einem Würfelzucker.

    Volumeneinheiten Würfelzucker als Alltagsbeispiel für 1 Milliliter StudySmarter

    \(\displaystyle 1\;\text{dm}^3\)\(\text{1}\;\text{l}\)

    Das Volumen von einem Milchkarton.

    Volumeneinheiten Milchkarton als Beispiel für 1 Liter StudySmarter

    \(\textnormal{m}^3\)\(\text{ 1 }\text{ }\mathrm{hl}\)\(\textstyle 1\cdot hl\)

    Das Volumen von einem Müllcontainer.

    Volumeneinheiten Müllcontainer als Beispiel für ein Kubikmeter StudySmarter

    \(\displaystyle 1\,\mathrm{km}^3\)

    Das Volumen des Schwarzen Meers beträgt \(547\,000\,\text{km}^{3}\)

    Volumeneinheiten Meer Volumen StudySmarter

    Volumeneinheiten umrechnen

    Jetzt hast Du vielleicht etwas besser vor Augen, wie die unterschiedlichen Gewichtseinheiten im Größenverhältnis zueinander stehen.

    Je nachdem, ob Du lieber mit großen Zahlen oder mit Kommazahlen arbeitest, bietet es sich an, alle vorkommenden Einheiten in eine der kleineren oder größeren auftretenden Einheiten umzurechnen. Welche Einheit Du verwendest, ist meistens Geschmackssache.

    Grundsätzlich gibt es zwei Möglichkeiten, Volumeneinheiten umzurechnen: mit der Umrechnungszahl oder mittels einer Stellenwerttabelle.

    Umrechnen mit der Umrechnungszahl

    Die Umformung zwischen Volumeneinheiten erfolgt in tausender Schritten. Wenn Du also von einer kleinen auf eine größere Einheit rechnest, dividierst Du mit \(\boldsymbol{1}\cdot\boldsymbol{000}\) (z.B. von ml auf l). Wenn Du aber von einer größeren Gewichtseinheit auf eine kleinere Einheit umformst, multiplizierst Du mit \(\textbf{1}\, \textbf{000}\) (z.B. von \(\displaystyle m^3\) auf \(\text{dm}^3\)).

    Je nachdem, nach welcher Größe Du umformst, verschiebt sich das Komma nach rechts oder nach links.

    Die Umrechnungszahl der Volumeneinheiten beträgt \(\boldsymbol{1 \, \cdot 1,000}\).

    Folgend wird Dir gezeigt, wie Du mithilfe der Umrechnungszahl der Volumeneinheiten, die Volumeneinheiten im Kubikmaß umformen kannst:

    Volumeneinheiten Umformen von Kubikmaßen StudySmarterAbbildung 1: Umformung von Kubikmaßen

    Schau Dir das Umformen der Volumeneinheiten im Kubikmaß in einem Beispiel an.

    Aufgabe 1

    Es sollen \(5 \thinspace 000 \thinspace dm^3\) in \(\textnormal{m}^3\) umrechnen.

    Lösung

    Dividiere das Volumen mit der Umrechnungszahl \(\mathrm{1\,000}\).

    \(\text{5}\,\text{000}\,\text{dm}^{\text{3}}\,:\,\text{1}\,\text{000}=\text{5}\,\text{m}^{\text{3}}\)

    \(\text{5}\,\text{000}\,\text{dm}^{\text{3}}\)sind umgeformt \(\displaystyle 5 \, m^{3}\).

    Schließlich wird Dir noch gezeigt, wie Du mithilfe der Umrechnungszahl, die Volumeneinheiten im Litermaß umformen kannst.

    Volumeneinheiten Umformen von Litermaßen StudySmarter

    Abbildung 2: Umformen von Litermaßen

    Schau Dir das Umformen der Volumeneinheiten im Litermaß in einem Beispiel an.

    Aufgabe 2

    Es sollen \(2 \cdot ml\) in µl umgeformt werden.

    Lösung

    Multipliziere das Volumen, mit der Umrechnungszahl \(\mathrm{1\cdot1000}\).

    \(2\,\text{ml}\,\cdot\,1\,000\,\text{=}\,2\,000\,\text{l}\)

    \(2\cdot ml\) entsprechen \(2\,000\,\mathrm{\mu l}\).

    Umwandeln mit der Stellenwerttabelle

    Stellenwerttabellen helfen Dir bei der Umrechnung und können auf die jeweiligen Umrechnungszahlen angepasst werden. Um die Gewichtseinheiten umzurechnen, sieht die Tabelle folgendermaßen aus:

    \(\textnormal{m}^3\) (hl)\(\textit{dm}^3\) (l)\(\text{cm}^3\) (ml)\text{mm}^3 (µl)
    ZEHZEHZEHZE

    H steht für Hunderter, dort trägst Du den Hunderter in der Umrechnung ein. Z steht für Zehner. Das heißt, Du trägst dort bei der Umrechnung den Zehner ein. E steht für Einer. Du trägst dort bei der Umrechnung also den Einer ein.

    Aufgabe 3

    Forme den Wert \(10,3 l\cdot\) in eine kleinere Einheit und den Wert \(\mathrm{120, 310} l\) in eine größere Einheit um.

    Lösung

    Trage die Werte in die Tabelle ein.

    Die Einer der Zahl schreibst Du in die Einerspalte der jeweiligen Volumeneinheit. Fülle anschließend die Tabelle mit den restlichen Zahlen auf.

    Bei einer Zahl, die durch ein Komma getrennt wurde, schreibst Du zunächst den Einer, danach eventuell, falls vorhanden, den Zehner und den Hunderter in die Tabelle rein. Anschließend trägst Du alles links vom Komma, links nach dem Einer rein und alles rechts vom Komma, recht nach dem Einer ein.

    In dem Beispiel sieht das so aus:

    hllmlµl
    ZEHZEHZEHZE
    103
    120310
    Die Zahl kannst Du jetzt in kleinere Einheiten umrechnen, indem Du die Zehner und Einer der gewünschten Einheit mit Nullen auffüllst.
    hllmlµl
    ZEHZEHZEHZE
    10300

    Umgeformt erhältst Du folgenden Wert:\(10\cdot 300\, \text{ml}\)

    Um in größere Einheiten umzurechnen, werden die Nullen bis zum Einer der gewünschten Einheit weggenommen. Alles, was hinter dem Einer steht, wird durch ein Komma von der Zahl ab dem Einer der größeren Einheit getrennt.
    hllmlµl
    ZEHZEHZEHZE
    12031

    Umgeformt erhältst Du folgenden Wert: \(\text{120, 31 \(\cdotp\)} \, \text{ml}\).

    Mit Volumeneinheiten das Volumen von Körpern berechnen

    Manchmal musst Du das Volumen eines Objektes in Liter- oder Kubikmaßen berechnen. Dies machst Du, indem Du die Abmessungen des Objektes berücksichtigst.

    Wie Du das Volumen eines Körpers bestimmst, hängt von der Form des dreidimensionalen Objektes ab, da das Volumen für jeden Formtyp anders berechnet wird.

    Um das Volumen eines Würfels zu finden, kannst Du folgenede Formel verwenden:

    \(\boldsymbol{Volumen} \mathbin{\boldsymbol{=}} \boldsymbol{L\ddot{a}nge} \mathbin{\boldsymbol{\cdot}} \boldsymbol{Breite} \mathbin{\boldsymbol{\cdot}} \boldsymbol{H\ddot{o}he}\)

    Volumeneinheiten Volumen Quader StudySmarterAbbildung 3: Volumen eines Quader

    Das Volumen einer dreidimensionalen Form wird in Kubikeinheiten, wie Kubikzentimeter, angegeben.

    Um das Errechnen von Volumina und Rauminhalten von verschiedenen Objekten zu erleichtern, wurden Formeln hergeleitet. In der Tabelle findest Du die wichtigsten Volumen Formeln.

    KörperFormel

    Volumeneinheiten Quader StudySmarter

    Quader
    \(V = a \cdot b \cdot c\)

    Volumeneinheiten Würfel StudySmarter

    Würfel
    \( V = a \cdot a \cdot a = a^3 \)

    Volumeneinheiten Kegel StudySmarter

    Kegel
    \(\displaystyle V = \frac{\pi Radius^{2} \cdot Höhe}{2}\)

    Volumeneinheiten Zylinder StudySmarter

    Zylinder
    \(\mathrm{V} = \pi \cdot Radius^{2} \cdot \mathrm{H}\ddot{\mathrm{o}}\mathrm{he}\)

    Volumeneinheiten Pyramide StudySmarter

    Pyramide
    \( V = \frac{Grundfläche(a \cdot b) \cdot Höhe}{3} \)

    Volumeneinheiten Kugel StudySmarter

    Kugel
    \(V = \frac{4}{3} \cdot \pi \cdot \text{Radius}^2\)

    Volumeneinheiten berechnen – Aufgaben

    Du hast nun so einiges über Gewichtseinheiten gelesen. In diesem Abschnitt kannst Du Dein neu erlerntes Wissen an den Übungsaufgaben ausprobieren.

    Aufgabe 4

    Du eröffnest in Deiner Nachbarschaft einen Limonadenstand, um Limonade zu verkaufen. Du benötigst \(3,7\ l\) Zitronensaft für Deine Limonade. Dein Messbecher zeigt die aber nur das Volumen in ml an. Berechne mithilfe der Stellenwerttabelle, wie viele Milliliter \(3,7\,l\) sind, damit Du die Limonade herstellen kannst.

    Lösung

    Trage die \(\displaystyle 3,7\ l\) in die Stellenwerttabelle ein, indem Du den Einer zunächst in die Tabelle einträgst und dann die Ziffern, die rechts vom Komma sind, rechts nach dem Einer einträgst.


    hllmlµl
    ZEHZEHZEHZE
    37

    Forme nach ml um, indem Du die Nullen bis zum Einerspalte vom Gramm ausfüllst.

    hllmlµl
    ZEHZEHZEHZE
    3700

    \(\text{3}\cdot\text{700}\,\text{ml}\) entsprechen 3,7 l. Du musst \(3 \cdot 700\cdot ml\) im Messbecher abmessen für Deine Limonade.

    Probier auch die Aufgabe 5 zu lösen!

    Aufgabe 5

    Du willst für ein Experiment Deine Badewanne mit 20 Packungen Milch füllen? In einer Packung Milch ist \(\mathrm{l}\) Milch enthalten. Wie viel ml Milch befinden sich in der Badewanne, nachdem Du 20 Packungen Milch (je \(1 \ l\)) in die Badewanne gekippt hast?

    Lösung

    Schritt 1:

    Rechne von Liter auf Milliliter um.

    Multipliziere \(\mbox{\(1\,\textnormal{l}\)}\) mit der Umrechnungszahl \(\mathrm{1\,000}\), um von Liter auf Milliliter umzuformen.

    \begin{equation}1\,l\,\cdot\,1\,000=1\,000\,\text{ml}\end{equation}

    \(\text{l}\) entspricht \(\text{1000}\,\text{ml}\).

    Schritt 2:

    Berechne das Gesamtvolumen Milch in Milliliter, was Du in die Badewanne kippst.

    Multipliziere die \(\text{1} \cdot 10^3\text{ ml}\), die Du vorhin errechnet hast, mit den 20 Packungen an Milch, die vorhanden sind.

    \(\textrm{1 000 ml }\cdot\textrm{ 20 Packungen }=\mathbf{20000 ml}\)

    Es werden \(\ 20\ l\) Milch werden in die Badewanne gekippt.

    Volumeneinheiten – Das Wichtigste auf einen Blick

    • Um den Ziffern und Zahlen eine Bedeutung zuzuschreiben, werden Einheiten benötigt.

    • Um die Zahlen vor den Einheiten möglichst klein und damit übersichtlich zu halten, gibt es verschiedene Einheiten für verschieden schwere Dinge

    • Das Volumen ist eine Größe, mit der ein Rauminhalt beschrieben und berechnet werden kann
    • Kubikmaße und Litermaße beschreiben beide das Volumen eines Rauminhaltes.
      • Angegeben werden Volumeneinheiten im Falle von Flüssigkeiten für gewöhnlich in Liter oder Milliliter.
      • Das Volumen von Hohlräumen oder Feststoffen wird meistens in Kubikmaßen angegeben.
      • Jeder Kubikmaß hat einen Litermaß, der dasselbe Volumen bestimmt.
    • Volumeneinheiten müssen vor einer weiteren Berechnung erst auf eine gemeinsame Einheit gebracht werden
    • Du kannst Volumeneinheiten mittels der Umrechnungszahl oder mittels Stellenwerttabelle berechnen.
      • Die Umrechnungszahl der Volumeneinheiten beträgt \( 1000\).
    • Um das Litermaß zu errechnen, benötigst Du das jeweilige Kubikmaß, um dieses dann nach Litermaßen umzuformen.
    Lerne schneller mit den 1 Karteikarten zu Volumeneinheiten

    Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

    Volumeneinheiten
    Häufig gestellte Fragen zum Thema Volumeneinheiten

    Was gibt das Volumen an?

    Das Volumen ist eine Größe, mit der ein Rauminhalt beschrieben und berechnet wird.


    Das Volumen eines  Körpers kann auf zwei verschiedenen Methoden beschrieben werden:

    • Kubikmaß
    • Litermaß

    Wie rechnet man Volumeneinheiten um?

    Volumeneinheiten können mittels der Umrechnungszahl oder mittels einer Stellenwerttabelle berechnet werden.


    Das Umrechnen mit der Umrechnungszahl

    zwischen Volumeneinheiten erfolgt in tausender Schritten. Die Umrechnungszahl der Volumeneinheiten beträgt 1000. Wenn Du also von einer kleinen auf eine größere Einheit rechnest, dividierst Du mit 1000 (z.B. von ml auf l). Wenn Du aber von einer größeren Gewichtseinheit auf eine kleinere Einheit umformst, multiplizierst Du mit 1000 (z.B. von m3 auf dm3).

    Je nachdem, nach welcher Größe Du umformst, verschiebt sich das Komma nach rechts oder nach links.

    Wie viele Volumeneinheiten gibt es?

    Das Volumen eines  Körpers kann auf zwei verschiedenen Methoden beschrieben werden:


    • Kubikmaß
    • Litermaß


    Das Volumen von Hohlräumen, Flüssigkeiten oder Feststoffen wird meistens in Kubikmaßen angegeben.


    Die im Artikel genutzten Kubikmaße sind:

    • Kubikmillimeter (mm3)
    • Kubikzentimeter (cm3)
    • Kubikdezimeter (dm3)
    • Kubikmeter (m3)
    • Kubikkilometer (km3)


    Das Litermaß wird zur Bestimmung des Volumens von Flüssigkeiten genutzt.


    Die im Artikel genutzten Litermaße sind:

    • Mikroliter (µl)
    • Milliliter (ml)
    • Liter (l)
    • Hektoliter (hl)

    Wie berechnet man das Volumen in Liter?

    Merk  dir: 1 dm3 = 1 l


    Du kannst von jeder Kubikeinheit in Liter umrechnen, wenn Du dir dabei merkst das 1 dm3 das selbe ist wie 1 l.


    Dazu kannst du über die Stellenwerttabelle oder die Umrechnungszahl umformen.

    Erklärung speichern
    Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

    Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

    Content-Erstellungsprozess:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

    Lerne Lily kennen
    Inhaltliche Qualität geprüft von:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

    Lerne Gabriel kennen

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Mathe Lehrer

    • 14 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren