Springe zu einem wichtigen Kapitel
Um die Eigenschaften der Logarithmusfunktion zu wiederholen, schaue gerne in den Artikel "Allgemeine Logarithmusfunktion" rein!
Allgemeines zum Ableiten der Logarithmusfunktion
Die Ableitung der allgemeinen Logarithmusfunktion lautet:
Logarithmus ableiten – Herleitung
Für die Herleitung der Ableitung der allgemeinen Logarithmusfunktion benötigst Du die Umkehrfunktion. Diese lautet .
Mehr Details zu dem Thema findest Du im Artikel "Allgemeine Logarithmusfunktion".
Notierst Du nun die Logarithmusfunktion und die dazugehörige Umkehrfunktion , erhältst du folgende Gleichungen:
Als Nächstes wendest Du die Formel an, mit der Du die Ableitung der Umkehrfunktion bildest. Diese lautet .
Mehr dazu findest Du im Artikel "Ableitung der Umkehrfunktion".
Diese Regel musst Du nun nach umformen, um am Ende die Ableitung der allgemeinen Logarithmusfunktion zu bilden:
Zur Erinnerung: Die Ableitung der Exponentialfunktion lautet:
Jetzt wendest Du die Ableitungsregel auf die Umkehrfunktion an und erhältst die folgende Ableitung der Umkehrfunktion:
Nun setzt Du diese Ableitung in die gesamte Formel ein. Du erhältst folgenden Ausdruck:
Die Variable bleibt jetzt noch in der Ableitung stehen. Diese kannst Du durch den Ausdruck ersetzen:
Zum Schluss wendest Du noch das Gesetz an, das aus der Definition des Logarithmus’ gefolgert werden kann. Dieses lautet:
So erhältst Du folgende Ableitung für die allgemeine Logarithmusfunktion:
Logarithmus ableiten – Aufgaben
Mit den folgenden Aufgaben kannst Du Dein Wissen zur Ableitung der Logarithmusfunktion besser verstehen:
Aufgabe 1
Bilde die Ableitung der Funktion mit mit der Basis .
Lösung zu Aufgabe 1
Nutze die Formel der Ableitung . Du erhältst folgende Ableitung_
Der Ausdruck ergibt die Zahl . Deshalb kann die Ableitung noch vereinfacht werden:
Die zugehörigen Graphen sehen so aus:
Die Funktion besitzt also die Ableitung .
Ableitung der natürlichen Logarithmusfunktion
Die Ableitung der natürlichen Logarithmusfunktion lautet:
Um mehr zu der Ableitung des natürlichen Logarithmus zu erfahren, schau Dir gerne den Artikel "Ln ableiten" an.
Ableitungen der erweiterten Logarithmusfunktion
Für viele Aufgaben benötigst Du die Ableitung der erweiterten Logarithmusfunktion. Diese wird zur Berechnung von Extrempunkten und Wendepunkten verwendet.
Zur Erinnerung:
Von beiden Gleichungen benötigst Du nun noch jeweils die Ableitung:
Wendest Du nun die Faktorregel und die letzten Schritte der Kettenregel an, erhältst Du folgende Ableitung für die Funktion mit .
Daraus ergibt sich Folgendes:
Die Ableitung einer erweiterten Logarithmusfunktion mit lautet:
Immer dann, wenn in der Klammer vom Logarithmus nicht nur steht, musst Du die Kettenregel anwenden.
Aufgabe 2
Bestimme die Ableitung der Funktion mit .
Du kannst das wie eine normale Zahl/Konstante betrachten.
Lösung zur Aufgabe 2
Da Du hier wieder die Kettenregel anwenden musst, musst Du wieder die innere und äußere Funktion definieren.
Jetzt brauchst Du wieder die jeweiligen Ableitungen:
Wendest Du nun die letzten Schritte der Kettenregel an, erhältst Du folgende gesamte Ableitung für die Funktion mit :
Logarithmusfunktion mit Wurzel ableiten
Schauen wir uns zum Abschluss noch ein Beispiel mit einer etwas komplizierteren inneren Funktion an.
Aufgabe 3
Bilde die Ableitung der Funktion mit .
Lösung zur Aufgabe 3
Definiere wieder zuerst die innere und die äußere Funktion, um die Kettenregel anzuwenden.
Zur Erinnerung: Auch bei der Berechnung einer Wurzel musst Du die Kettenregel anwenden.
Um nun die Ableitungen der inneren und äußeren Funktion zu bilden, müssen musst Du zuerst die innere Funktion aufteilen.
Zur Erinnerung: Ableitung der Wurzelfunktion :
Dadurch ergeben sich die zwei Ableitungen der inneren und äußeren Funktion von :
Folgende Ableitung ergibt sich für die innere Funktion :
Nun brauchst Du nur noch die Ableitung der äußeren Funktion :
So ergibt sich folgende gesamte Ableitung der Funktion .
Ableitung Logarithmus – Das Wichtigste auf einen Blick
- Die Ableitung der allgemeinen Logarithmusfunktion lautet:
- Die Ableitung der natürlichen Logarithmusfunktion lautet:
- Die Ableitung der Logarithmusfunktion lautet:
- Immer dann, wenn in der Klammer vom Logarithmus nicht nur steht, musst Du die Kettenregel anwenden:
- Zuerst definierst Du die innere und die äußere Funktion.
- Dann bildest Du jeweils die Ableitung der inneren und äußeren Funktion.
- Zum Schluss müssen die Ableitungen und die Funktionen eingesetzt werden, um die gesamte Ableitung zu erhalten.
Lerne mit 0 Logarithmus ableiten Karteikarten in der kostenlosen StudySmarter App
Du hast bereits ein Konto? Anmelden
Häufig gestellte Fragen zum Thema Logarithmus ableiten
Wie leite ich den Logarithmus ab?
Der allgemeine Logarithmus wird mit Hilfe des natürlichen Logarithmus abgeleitet. Damit ist f'(x)=1/(x*ln(b)) die Ableitung der allgemeinen Logarithmusfunktion f(x)=logb(x).
Was ist der Unterschied zwischen lg und log?
Mit f(x)=lg(x) wird immer der Zehnerlogarithmus, also der Logarithmus zur Basis b=10, beziffert. Dieser kann auch wie folgt geschrieben werden f(x)=log10(x)=log(x)=lg(x). Mit f(x)=logb(x) wird der allgemeine Logarithmus beschrieben.
Wie leitet man log ab?
Der allgemeine Logarithmus wird mit Hilfe des natürlichen Logarithmus abgeleitet. Damit ist f'(x)=1/(x*ln(b)) die Ableitung der allgemeinen Logarithmusfunktion f(x)=logb(x).
Warum werden Funktionen abgeleitet?
Funktionen werden abgeleitet, um an der Stelle x die Steigung der Funktion zu erhalten. Diese Eigenschaft wird zum Beispiel benötigt, um Extrem- oder Wendepunkte zu bestimmen.
Über StudySmarter
StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.
Erfahre mehr